Delayed Rectifier K+Channels of Vascular Smooth Muscle: Characterization, Function, and Regulation by Phosphorylation

  • W. C. Cole
  • M. P. Walsh


Regulation of membrane potential in vascular smooth muscle cells is critical for determining the level of tone in the arterial wall and, as a result, vessel diameter and peripheral vascular resistance. K+ channels play a critical role in setting the basal level of membrane potential and in electrical and mechanical responses to changes of intraluminal pressure and vasoactive agonists. Voltage-activated K+ current (Kv) is an important component of outward K+ conductance of smooth muscle and may be divided into two varieties based on distinct inactivation characteristics: (i) rapidly inactivating, transient outward (KTO) or A-type K+ current, which exhibits rapid activation and fast, N-type inactivation kinetics, and (ii) delayed rectifier (KDR) current, which displays no, or only slow, C-type inactivation. In the past five years, it has become apparent that vascular KDR channels (i) are regulated by endogenous vasoactive molecules via phosphotransferase reactions involving serine/threonine kinases and (ii) play an important role in the control of electrical and mechanical activity, arterial diameter, and peripheral resistance. This chapter reviews our current understanding of the biophysical and pharmacological properties of vascular KDR channels, the signal transduction pathways involved in their regulation, and their possible roles in the control of tone and arterial diameter.


Arterial Diameter Myogenic Response Single Smooth Muscle Cell Rabbit Portal Vein Open State Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adda, S., Fleischmann, B. K., Freedman, B. D., Yu, M., Hay, D. W., and Kotlikoff, M. I., 1996, Expression and function of voltage-dependent potassium channel genes in human airway smooth muscle, J. Biol. Chem. 271:13239–13243.PubMedCrossRefGoogle Scholar
  2. Aiello, E. A., Walsh, M. P., and Cole, W., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 268:H926–H934.PubMedGoogle Scholar
  3. Aiello, E. A., Clément-Chomienne, O., Sontag, D. P., Walsh, M. P., and Cole, W. C., 1996, Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 271:H109– H119.PubMedGoogle Scholar
  4. Aiello, E. A., Malcolm, A. T., Walsh, M. P., and Cole, W. C., 1998, β-Adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells, Am. J. Physiol. 275:H448–H459.PubMedGoogle Scholar
  5. Akbarali, H. I., 1993, K+ currents in rabbit esophageal muscularis mucosae, Am. J. Physiol. 264:G1001–G1007.PubMedGoogle Scholar
  6. Archer, S. L., 1996, Diversity of phenotype and function of vascular smooth muscle cells, J. Lab. Clin. Med. 127:524–529.PubMedCrossRefGoogle Scholar
  7. Archer, S. L, Huang, J. M. C. Reeve, H. L., Hampl, V., Tolarova, S., Michelakis, E., and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia, Circ. Res. 78:431–442.PubMedCrossRefGoogle Scholar
  8. Beech, D. J., and Bolton, T. B., 1989, Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein, J. Physiol. (London) 418:293–309.Google Scholar
  9. Bolzon, B. J., Xiong, Z., and Cheung, D. W., 1993, Membrane rectification in single smooth muscle cells from the rat tail artery, Pflügers Arch. 425:482–490.PubMedCrossRefGoogle Scholar
  10. Bonnet, P., Rusch, N. J., and Harder, D. R., 1991, Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells, Pflügers Arch. 418:292–296.PubMedCrossRefGoogle Scholar
  11. Boyle, J. P., Tomasic, M., and Kotlikoff, M. I., 1992, Delayed rectifier potassium channels in canine and porcine airway smooth muscle cells, J. Physiol. (London) 447:329–350.Google Scholar
  12. Brayden, J. E., 1990, Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am. J. Physiol. 259:H668–H673.PubMedGoogle Scholar
  13. Brayden, J. E., and Nelson, M. T., 1992, Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535.PubMedCrossRefGoogle Scholar
  14. Carl, A., 1995, Multiple components of delayed rectifier K+ current in canine colonic smooth muscle, J. Physiol. (London) 484:339–353.Google Scholar
  15. Clément-Chomienne, O., Walsh, M. P., and Cole, W. C., 1996, Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes, J. Physiol. (London) 495:689–700.Google Scholar
  16. Clément-Chomienne, O., Ishii, K., Walsh, M. P., and Cole, W. C., 1999a, Identification, cloning and expression of rabbit vascular smooth muscle Kvl.5 and comparison with native delayed rectifier K+ current, J. Physiol. (London) 515:653–667.CrossRefGoogle Scholar
  17. Clément-Chomienne, O., Walsh, M. P., and Cole, W. C., 1999b, State-dependent channel block by 4-aminopyridine: Comparison of native delayed rectifier and cloned Kvl.5 currents of rabbit vascular myocytes, Biophys. J. 76:A188.CrossRefGoogle Scholar
  18. Cole, W. C., and Clément-Chomienne, O., 2000, K+ channels in smooth muscle: Structural and functional diversity, in: A View of Smooth Muscle (L. Barr, ed.), in press.Google Scholar
  19. D’Angelo, G., and Meininger, G. A., 1994, Transduction mechanism involved in the regulation of myogenic activity, Hypertension 23:1096–1105.PubMedCrossRefGoogle Scholar
  20. Dong, H., Waldron, G. J., Cole, W. C., Triggle, C. R. 1998, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vaso relaxation of the rabbit middle cerebral artery. Br. J. Pharmacol. 123(5):821–832.PubMedCrossRefGoogle Scholar
  21. Du, C., Carl, A., Smith, T. K., Sanders, K. M., and Keef, K. D., 1994, Mechanism of cyclic AMP-induced hyperpolarization in canine colon, J. Pharmacol. Exp. Ther. 268:208–215.PubMedGoogle Scholar
  22. Edwards, G., Ibbotson, T., and Weston, A. H., 1993, Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier, Br. J. Pharmacol 110:1037–1048.PubMedCrossRefGoogle Scholar
  23. Edwards, G., Zygmunt, P. M., Hogestatt, E. D., and Weston, A. H., 1996, Effects of cytochrome P-450 inhibitors on potassium currents and mechanical activity in rat portal vein, Br. J. Pharmacol 119:691–701.PubMedCrossRefGoogle Scholar
  24. Evans, A. M., Osipenko, O. N., and Gurney, A. M., 1996, Properties of a novel potassium current that is active at the resting potential in rabbit pulmonary smooth muscle cells, J. Physiol. (London) 496:407–420.Google Scholar
  25. Farrugia, G., 1996, Modulation of ionic currents in isolated canine and human jejunal circular smooth muscle cells by fluoxetine, Gastroenterology 110:1438–1445.PubMedCrossRefGoogle Scholar
  26. Fleischmann, B. K., Washabau, R. J., and Kotlikoff, M. I., 1993, Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells, J. Physiol. (L ondon) 469:625– 638.Google Scholar
  27. Gelband, C. H., and Hume, J. R., 1992, Ionic currents in single smooth muscle cells of the canine renal artery, Circ. Res. 71:745–758.PubMedCrossRefGoogle Scholar
  28. Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine renal artery: Novel mechanism for agonist-induced membrane depolarization. Circ. Res. 77:121–122.PubMedCrossRefGoogle Scholar
  29. Gollasch, M., Ried, C., Bychkov, R., Luft, F. C., and Haller, H., 1996, K+ currents in human coronary artery vascular smooth muscle cells, Circ. Res. 78:676–688.PubMedCrossRefGoogle Scholar
  30. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., Chandy, K. G. 1994, Pharmacological characterization of five cloned voltage-gated K+ channels, types Kvl.l, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines, Mol. Pharmacol. 45(6):1227–1234.PubMedGoogle Scholar
  31. Halliday, F. C., Aaronson, P. I., Evans, A. M., and Gurney, A. M., 1995, The pharmacological properties of K+ currents from rabbit isolated aortic smooth muscle cells, Br. J. Pharmacol. 116:3139–3148.PubMedCrossRefGoogle Scholar
  32. Hamaguchi, M., Ishibashi, T., and Imai, S., 1992, Involvement of charybdotoxin-sensitive K+ channel in the relaxation of bovine tracheal smooth muscle by glyceryltrinitrate and sodium nitroprusside, J. Pharmacol.Exp. Ther. 262:263–270.PubMedGoogle Scholar
  33. Hart, P. J., Overturf, K. E., Russell, S. N., Carl, A., Hume, J. R., Sanders, K. M., and Horowitz, B., 1993, Cloning and expression of a Kv1.2 class delayed rectifier K+ channel from canine colonic smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 90:9659–9663.PubMedCrossRefGoogle Scholar
  34. Imamura, Y., Tomoike, H., Narishige, T., Takahashi, T., Kasuya, H., and Takeshita, A., 1992, Glibenclamide decreases basal coronary blood flow in anesthetized dogs. Am. J. Physiol. 263:H399–H404.PubMedGoogle Scholar
  35. Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine Hi-receptor stimulation in rabbit coronary artery cells, J. Physiol. (London) 468:379–400.Google Scholar
  36. Jackson, W. F., Huebner, J. M., and Rusch, N. J., 1996, Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles, Microcirculation 3:313–328.PubMedCrossRefGoogle Scholar
  37. Karashima, T., Itoh, T., and Kuriyama, H., 1982, Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins, J. Pharmacol. Exp. Ther. 221:472–480.PubMedGoogle Scholar
  38. Knot, H. J., and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269:H348–H355.PubMedGoogle Scholar
  39. Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels, J. Physiol. (London) 492:419–430.Google Scholar
  40. Koh, S. D., Sanders, K. M., and Carl, A., 1996, Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A, Pflügers Arch. 432:401–412.PubMedCrossRefGoogle Scholar
  41. Kotlikoff, M. I., 1990, Potassium currents in canine airway smooth muscle cells, Am. J. Physiol. 259:L384– L395.PubMedGoogle Scholar
  42. Kuriyama, H., Kitamura, K., and Nabata, H., 1995, Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues, Pharmacol. Rev. 47:387–573.PubMedGoogle Scholar
  43. Leblanc, N., and Chartier, D., 1998, Specific inhibitors of calmodulin-dependent protein kinase are potent blockers of voltage-dependent K+ channels in vascular myocytes, Biophys. J. 74:A111.Google Scholar
  44. Leblanc, N., Wan, X., and Leung, P. M., 1994, Physiological role of Ca2+-activated and voltage-dependent K+ currents in rabbit coronary myocytes, Am. J. Physiol. 266:0523–0537.Google Scholar
  45. Liu, J., Hill, M. A., and Meininger, G. A., 1994, Mechanisms of myogenic enhancement by norepinephrine, Am. J. Physiol. 266:H440–H446.PubMedGoogle Scholar
  46. Loutzenhiser, R. D., and Parker, M. J., 1994, Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive potassium channels, Circ. Res. 74:861–869.PubMedCrossRefGoogle Scholar
  47. Mays, D. J., Foose, J. M., Philipson, L. H., and Tamkun, M. M., 1995, Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue, J. Gin. Invest. 96:282–292.Google Scholar
  48. Meininger, G. A., and Davis, M. J., 1992, Cellular mechanisms involved in the vascular myogenic response, Am. J. Physiol. 263:H647–H659.PubMedGoogle Scholar
  49. Mikawa, K., Kume, H., and Takagi, K., 1997, Effects of BKCa channels on the reduction of cytosolic Ca2+ in cGMP-induced relaxation of guinea-pig trachea, clin. Exp. Pharmacol. Physiol. 24:175–181.PubMedCrossRefGoogle Scholar
  50. Neild, T. O., and Keef, K., 1985, Measurements of the membrane potential of arterial smooth muscle in anesthetized animals and its relationship to changes in artery diameter, Microvasc. Res. 30(1):19–28.PubMedCrossRefGoogle Scholar
  51. Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.PubMedGoogle Scholar
  52. Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone, Am. J. Physiol. 259:C3–C18.PubMedGoogle Scholar
  53. Nelson, M. T., Cheng, H., Rubart, M., Santana, L. F., Bonev, A. D., Knot, H. J., and Lederer, W. J., 1995, Relaxation of arterial smooth muscle by calcium sparks, Science 270:633–637.PubMedCrossRefGoogle Scholar
  54. Nishiyama, M., Hashitani, H., Kukuta, H., Yamomoto, Y., and Suzuki, H., 1998, Potassium channels activated in the endothelium-dependent hyperpolarization in guinea-pig coronary artery, J. Physiol. (London) 510:455–465.CrossRefGoogle Scholar
  55. Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch. 409:561–568.PubMedCrossRefGoogle Scholar
  56. Osipenko, O. N., Evans, A. M., and Gurney, A. M., 1997, Regulation of resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current, Br. J. Pharmacol 120:1461–1470.PubMedCrossRefGoogle Scholar
  57. Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., Sanders, K. M., and Horowitz, B., 1994, Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles. Am. J. Physiol. 267:0231–0238.Google Scholar
  58. Patel, A. J., Lazdunski, M., and Honore, E., 1997, Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes, EMBO J. 16:6615–6625.PubMedCrossRefGoogle Scholar
  59. Perez, G. J., Bonev, A. D., Patlak, J. B., and Nelson, M. T., 1999, Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries, J. Gen. Physiol. 113:229–238.PubMedCrossRefGoogle Scholar
  60. Pfrunder, D., and Kreye, V. A., 1992, Tedisamil inhibits the delayed rectifier K+ current in single smooth muscle cells of the guinea-pig portal vein, Pflügers Arch. 421:22–25.PubMedCrossRefGoogle Scholar
  61. Post, J. M., Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine pulmonary artery: Novel mechanism for hypoxia-induced membrane depolarization, Grc. Res. 77:131–139.Google Scholar
  62. Quayle, J. M., McCarron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol. 265:0363–0370.Google Scholar
  63. Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcei, D. N., Dolly, J. O., and Pongs, O., 1992, Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289–294.CrossRefGoogle Scholar
  64. Rhodes, K. J., Monaghan, M. M., Barrezueta, N. X., Nawoschik, S., Bekele-Arcuri, Z, Matos, M. F., Nakahira, K., Schechter, L. E., and Trimmer, J. S., 1996, Voltage-gated K+ channel β subunits: Expression and distribution of Kvβ1 and Kvβ2 in adult rat brain, J. Neurosci. 16:4846–4860.PubMedGoogle Scholar
  65. Roberds. S. L., and Tamkun, M. M., 1991, Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart, Proc. Natl. Acad. Sci. U.S.A. 88:1798–1802.PubMedCrossRefGoogle Scholar
  66. Salter, K. J., and Kozlowski, R. Z., 1996, Endothelin receptor coupling to potassium and chloride channels in isolated rat pulmonary arterial myocytes, J. Pharmacol. Exp. Ther. 279:1053–1062.PubMedGoogle Scholar
  67. Salter, K. J., Wilson, C. M., Kato, K., and Kozlowski, R. Z., 1998, Endothelin-1, delayed rectifier K channels, and pulmonary arterial smooth muscle, J. Cardiovasc. Pharmacol. 31(Suppl 1):S81–S83.PubMedCrossRefGoogle Scholar
  68. Schmalz, F., Kinsella, J., Koh, S. D., Vogalis, F., Schneider, A., Flynn, E. R., Kenyon, J. L., and Horowitz, B., 1998, Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles, Am. J. Physiol. 274:G901–G911.PubMedGoogle Scholar
  69. Shimizu, S., and Paul, R. J., 1997, The endothelium-dependent, substance P relaxation of porcine coronary arteries resistant to nitric oxide synthesis inhibition is partially mediated by 4-aminopyridine-sensitive voltage-dependent K+ channels, Endothelium 5:287–295.PubMedCrossRefGoogle Scholar
  70. Shimoda, L. A., Sylvester, J. T., and Sham, J. S., 1998, Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1, Am. J. Physiol. 274:L842–L853.PubMedGoogle Scholar
  71. Shuttleworth, C. W., Koh, S. D., Bayginov, O., and Sanders, K. M., 1996, Activation of delayed rectifier potassium channels in canine proximal colon by vasoactive intestinal peptide, J. Physiol. (London) 493:651–663.Google Scholar
  72. Smirnov, S. V., and Aaronson, P. I., 1992, Ca2+-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries, J. Physiol. (London) 457:431–454.Google Scholar
  73. Smirnov, S. V., and Aaronson, P. I., 1995, Inhibition of vascular smooth muscle cell K+ currents by tyrosine kinase inhibitors genistein and ST 638, Circ. Res. 76:310–316.PubMedCrossRefGoogle Scholar
  74. Smirnov, S. V., Robertson, T. P., Ward, J. P., and Aaronson, P. I., 1994, Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells, Am. J. Physiol. 266:H365–H370.PubMedGoogle Scholar
  75. Snetkov, V. A., Hirst, S. J., Twort, C. H. C., and Ward, J. P. T., 1995, Potassium currents in human freshly isolated bronchial smooth muscle cells, Br. J. Pharmacol. 115:1117–1125.PubMedCrossRefGoogle Scholar
  76. Sobey, C. G., and Faraci, F. M., 1999, Role of voltage-dependent K+ channels and soluble guanylate cyclase in dilator responses of the basilar artery to nitric oxide, Br. J. Pharmacol. 126(6):1437–1443.PubMedCrossRefGoogle Scholar
  77. Sturek, M., Stehno-Bittel, L., and Obye, P., 1991, Modulation of ion channels by calcium release in coronary artery smooth muscle, in: Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells (N. Sperelakis, and H. Kuriyama, eds.), Elsevier, New York pp. 65–80.Google Scholar
  78. Taguchi, H., Heistad, D. D., Kitazono, T., and Faraci, F. M., 1995, Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca2+-dependent K+ channels, Circ. Res. 76:1057–1062.PubMedCrossRefGoogle Scholar
  79. Tamkun, M. M., Bennett, P. B., and Snyders, D. J., 1995, Cloning and expression of human cardiac potassium channels, in: Cardiac Electrophysiology. From Cell to Bedside (D. P. Zipes and J. Jalife, eds.), Sanders, Philadelphia pp. 21–31.Google Scholar
  80. Taniguchi, J., Furukawa, K. I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167–172.PubMedCrossRefGoogle Scholar
  81. Tare, M., Parkington, H. C., Coleman, H. A., Neild, T. O., and Dusting, G. J., 1990, Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium, Nature 346:69–71.PubMedCrossRefGoogle Scholar
  82. Thornbury, K. D., Ward, S. M., and Sanders, K. M., 1992, Participation of fast-acting, voltage-dependent K currents in electrical slow waves of colonic circular muscle, Am. J. Physiol. 263:C226–C236.PubMedGoogle Scholar
  83. Volk, K. A., Shibata, E. F., 1993, Single delayed rectifier potassium channels from rabbit coronary artery myocytes. Am. J. Physiol. 264(4pt 2):H1146–1153.PubMedGoogle Scholar
  84. Volk, K. A., Matsuda, J. J., and Shibata, E. F., 1991, A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells, J. Physiol. (London) 439:751–768.Google Scholar
  85. Waldron, G. J., and Cole, W. C, 1999, Activation of vascular smooth muscle K+ channels by endotheliumderived relaxing factors, Clin. Exp. Pharmacol. Physiol. 26:180–184.PubMedCrossRefGoogle Scholar
  86. Waldron, G. J., Iftinca, M., Clément-Chomienne, O., Triggle, C. R., and Cole, W. C, 1999, Direct block of voltage-gated K+ current of vascular myocytes by clotrimazole not involving inhibition of cytochrome P450, Biophys. J. 76:A188.CrossRefGoogle Scholar
  87. Walsh, M. P., 1994, Regulation of vascular smooth muscle tone, Can. J. Physiol. Pharmacol. 72:919–936.PubMedCrossRefGoogle Scholar
  88. Wang, H., Mori, Y., and Koren, G., 1994, Expression of Kvl.5 in the rat tissues and the mechanism of cell specific regulation of Kvl.5 gene by cAMP, Biophys. J. 66:207A.CrossRefGoogle Scholar
  89. Wang, J., Juhaszova, M., Rubin, L. J., and Yuan, X. J., 1997, Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells, J. Clin. Invest. 100:2347–2353.PubMedCrossRefGoogle Scholar
  90. Weir, E. K., Reeve, H. L., Huang, J. M. C., Michelakis, E., Nelson, D. P., Hampl, V., and Archer, S. L., 1996, Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction, Circulation 94:2216–2220.PubMedCrossRefGoogle Scholar
  91. Xiong, Z., Sperelakis, N., NofFsinger, A., and Fenoglio-Preiser, A., 1995, Potassium currents in rat colonic smooth muscle cells and changes during development and aging, Pflügers Arch. 430:563–572.PubMedCrossRefGoogle Scholar
  92. Yuan, X.-J., 1995, Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes, Circ. Res. 77:370–378.PubMedCrossRefGoogle Scholar
  93. Yuan, X.-J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1995, Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes, Am. J. Physiol. 268:C259–C270.PubMedGoogle Scholar
  94. Yuan, X.-J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.PubMedCrossRefGoogle Scholar
  95. Yuan, X. J., Wang, J., Juhaszova, M., Golovina, V. A., and Rubin, L. J., 1998, Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am. J. Physiol. 274:L621– L635.PubMedGoogle Scholar
  96. Zhang, L., Bonev, A. D., Nelson, M. T., and Mawe, G. M., 1993, Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells, Am. J. Physiol. 265:C1552–C1561.PubMedGoogle Scholar
  97. Zhao, Y. J., Wang, J., Rubin, L. J., and Yuan, X. J., 1997, Inhibition of K(V) and K(Ca) channels antagonizes NO-induced relaxation in pulmonary artery, Am. J. Physiol. 272:H904–H912.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • W. C. Cole
    • 1
  • M. P. Walsh
    • 2
  1. 1.Smooth Muscle Research Group., Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations