Skip to main content

Delayed Rectifier K+Channels of Vascular Smooth Muscle: Characterization, Function, and Regulation by Phosphorylation

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

Regulation of membrane potential in vascular smooth muscle cells is critical for determining the level of tone in the arterial wall and, as a result, vessel diameter and peripheral vascular resistance. K+ channels play a critical role in setting the basal level of membrane potential and in electrical and mechanical responses to changes of intraluminal pressure and vasoactive agonists. Voltage-activated K+ current (Kv) is an important component of outward K+ conductance of smooth muscle and may be divided into two varieties based on distinct inactivation characteristics: (i) rapidly inactivating, transient outward (KTO) or A-type K+ current, which exhibits rapid activation and fast, N-type inactivation kinetics, and (ii) delayed rectifier (KDR) current, which displays no, or only slow, C-type inactivation. In the past five years, it has become apparent that vascular KDR channels (i) are regulated by endogenous vasoactive molecules via phosphotransferase reactions involving serine/threonine kinases and (ii) play an important role in the control of electrical and mechanical activity, arterial diameter, and peripheral resistance. This chapter reviews our current understanding of the biophysical and pharmacological properties of vascular KDR channels, the signal transduction pathways involved in their regulation, and their possible roles in the control of tone and arterial diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adda, S., Fleischmann, B. K., Freedman, B. D., Yu, M., Hay, D. W., and Kotlikoff, M. I., 1996, Expression and function of voltage-dependent potassium channel genes in human airway smooth muscle, J. Biol. Chem. 271:13239–13243.

    Article  PubMed  CAS  Google Scholar 

  • Aiello, E. A., Walsh, M. P., and Cole, W., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 268:H926–H934.

    PubMed  CAS  Google Scholar 

  • Aiello, E. A., Clément-Chomienne, O., Sontag, D. P., Walsh, M. P., and Cole, W. C., 1996, Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 271:H109– H119.

    PubMed  CAS  Google Scholar 

  • Aiello, E. A., Malcolm, A. T., Walsh, M. P., and Cole, W. C., 1998, β-Adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells, Am. J. Physiol. 275:H448–H459.

    PubMed  CAS  Google Scholar 

  • Akbarali, H. I., 1993, K+ currents in rabbit esophageal muscularis mucosae, Am. J. Physiol. 264:G1001–G1007.

    PubMed  CAS  Google Scholar 

  • Archer, S. L., 1996, Diversity of phenotype and function of vascular smooth muscle cells, J. Lab. Clin. Med. 127:524–529.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L, Huang, J. M. C. Reeve, H. L., Hampl, V., Tolarova, S., Michelakis, E., and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia, Circ. Res. 78:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Beech, D. J., and Bolton, T. B., 1989, Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein, J. Physiol. (London) 418:293–309.

    CAS  Google Scholar 

  • Bolzon, B. J., Xiong, Z., and Cheung, D. W., 1993, Membrane rectification in single smooth muscle cells from the rat tail artery, Pflügers Arch. 425:482–490.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, P., Rusch, N. J., and Harder, D. R., 1991, Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells, Pflügers Arch. 418:292–296.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, J. P., Tomasic, M., and Kotlikoff, M. I., 1992, Delayed rectifier potassium channels in canine and porcine airway smooth muscle cells, J. Physiol. (London) 447:329–350.

    CAS  Google Scholar 

  • Brayden, J. E., 1990, Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am. J. Physiol. 259:H668–H673.

    PubMed  CAS  Google Scholar 

  • Brayden, J. E., and Nelson, M. T., 1992, Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Carl, A., 1995, Multiple components of delayed rectifier K+ current in canine colonic smooth muscle, J. Physiol. (London) 484:339–353.

    CAS  Google Scholar 

  • Clément-Chomienne, O., Walsh, M. P., and Cole, W. C., 1996, Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes, J. Physiol. (London) 495:689–700.

    Google Scholar 

  • Clément-Chomienne, O., Ishii, K., Walsh, M. P., and Cole, W. C., 1999a, Identification, cloning and expression of rabbit vascular smooth muscle Kvl.5 and comparison with native delayed rectifier K+ current, J. Physiol. (London) 515:653–667.

    Article  Google Scholar 

  • Clément-Chomienne, O., Walsh, M. P., and Cole, W. C., 1999b, State-dependent channel block by 4-aminopyridine: Comparison of native delayed rectifier and cloned Kvl.5 currents of rabbit vascular myocytes, Biophys. J. 76:A188.

    Article  Google Scholar 

  • Cole, W. C., and Clément-Chomienne, O., 2000, K+ channels in smooth muscle: Structural and functional diversity, in: A View of Smooth Muscle (L. Barr, ed.), in press.

    Google Scholar 

  • D’Angelo, G., and Meininger, G. A., 1994, Transduction mechanism involved in the regulation of myogenic activity, Hypertension 23:1096–1105.

    Article  PubMed  Google Scholar 

  • Dong, H., Waldron, G. J., Cole, W. C., Triggle, C. R. 1998, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vaso relaxation of the rabbit middle cerebral artery. Br. J. Pharmacol. 123(5):821–832.

    Article  PubMed  CAS  Google Scholar 

  • Du, C., Carl, A., Smith, T. K., Sanders, K. M., and Keef, K. D., 1994, Mechanism of cyclic AMP-induced hyperpolarization in canine colon, J. Pharmacol. Exp. Ther. 268:208–215.

    PubMed  CAS  Google Scholar 

  • Edwards, G., Ibbotson, T., and Weston, A. H., 1993, Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier, Br. J. Pharmacol 110:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, G., Zygmunt, P. M., Hogestatt, E. D., and Weston, A. H., 1996, Effects of cytochrome P-450 inhibitors on potassium currents and mechanical activity in rat portal vein, Br. J. Pharmacol 119:691–701.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. M., Osipenko, O. N., and Gurney, A. M., 1996, Properties of a novel potassium current that is active at the resting potential in rabbit pulmonary smooth muscle cells, J. Physiol. (London) 496:407–420.

    CAS  Google Scholar 

  • Farrugia, G., 1996, Modulation of ionic currents in isolated canine and human jejunal circular smooth muscle cells by fluoxetine, Gastroenterology 110:1438–1445.

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann, B. K., Washabau, R. J., and Kotlikoff, M. I., 1993, Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells, J. Physiol. (L ondon) 469:625– 638.

    CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1992, Ionic currents in single smooth muscle cells of the canine renal artery, Circ. Res. 71:745–758.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine renal artery: Novel mechanism for agonist-induced membrane depolarization. Circ. Res. 77:121–122.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Ried, C., Bychkov, R., Luft, F. C., and Haller, H., 1996, K+ currents in human coronary artery vascular smooth muscle cells, Circ. Res. 78:676–688.

    Article  PubMed  CAS  Google Scholar 

  • Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., Chandy, K. G. 1994, Pharmacological characterization of five cloned voltage-gated K+ channels, types Kvl.l, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines, Mol. Pharmacol. 45(6):1227–1234.

    PubMed  CAS  Google Scholar 

  • Halliday, F. C., Aaronson, P. I., Evans, A. M., and Gurney, A. M., 1995, The pharmacological properties of K+ currents from rabbit isolated aortic smooth muscle cells, Br. J. Pharmacol. 116:3139–3148.

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi, M., Ishibashi, T., and Imai, S., 1992, Involvement of charybdotoxin-sensitive K+ channel in the relaxation of bovine tracheal smooth muscle by glyceryltrinitrate and sodium nitroprusside, J. Pharmacol.Exp. Ther. 262:263–270.

    PubMed  CAS  Google Scholar 

  • Hart, P. J., Overturf, K. E., Russell, S. N., Carl, A., Hume, J. R., Sanders, K. M., and Horowitz, B., 1993, Cloning and expression of a Kv1.2 class delayed rectifier K+ channel from canine colonic smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 90:9659–9663.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, Y., Tomoike, H., Narishige, T., Takahashi, T., Kasuya, H., and Takeshita, A., 1992, Glibenclamide decreases basal coronary blood flow in anesthetized dogs. Am. J. Physiol. 263:H399–H404.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine Hi-receptor stimulation in rabbit coronary artery cells, J. Physiol. (London) 468:379–400.

    CAS  Google Scholar 

  • Jackson, W. F., Huebner, J. M., and Rusch, N. J., 1996, Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles, Microcirculation 3:313–328.

    Article  PubMed  CAS  Google Scholar 

  • Karashima, T., Itoh, T., and Kuriyama, H., 1982, Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins, J. Pharmacol. Exp. Ther. 221:472–480.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269:H348–H355.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels, J. Physiol. (London) 492:419–430.

    CAS  Google Scholar 

  • Koh, S. D., Sanders, K. M., and Carl, A., 1996, Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A, Pflügers Arch. 432:401–412.

    Article  PubMed  CAS  Google Scholar 

  • Kotlikoff, M. I., 1990, Potassium currents in canine airway smooth muscle cells, Am. J. Physiol. 259:L384– L395.

    PubMed  CAS  Google Scholar 

  • Kuriyama, H., Kitamura, K., and Nabata, H., 1995, Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues, Pharmacol. Rev. 47:387–573.

    PubMed  CAS  Google Scholar 

  • Leblanc, N., and Chartier, D., 1998, Specific inhibitors of calmodulin-dependent protein kinase are potent blockers of voltage-dependent K+ channels in vascular myocytes, Biophys. J. 74:A111.

    Google Scholar 

  • Leblanc, N., Wan, X., and Leung, P. M., 1994, Physiological role of Ca2+-activated and voltage-dependent K+ currents in rabbit coronary myocytes, Am. J. Physiol. 266:0523–0537.

    Google Scholar 

  • Liu, J., Hill, M. A., and Meininger, G. A., 1994, Mechanisms of myogenic enhancement by norepinephrine, Am. J. Physiol. 266:H440–H446.

    PubMed  CAS  Google Scholar 

  • Loutzenhiser, R. D., and Parker, M. J., 1994, Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive potassium channels, Circ. Res. 74:861–869.

    Article  PubMed  CAS  Google Scholar 

  • Mays, D. J., Foose, J. M., Philipson, L. H., and Tamkun, M. M., 1995, Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue, J. Gin. Invest. 96:282–292.

    CAS  Google Scholar 

  • Meininger, G. A., and Davis, M. J., 1992, Cellular mechanisms involved in the vascular myogenic response, Am. J. Physiol. 263:H647–H659.

    PubMed  CAS  Google Scholar 

  • Mikawa, K., Kume, H., and Takagi, K., 1997, Effects of BKCa channels on the reduction of cytosolic Ca2+ in cGMP-induced relaxation of guinea-pig trachea, clin. Exp. Pharmacol. Physiol. 24:175–181.

    Article  PubMed  CAS  Google Scholar 

  • Neild, T. O., and Keef, K., 1985, Measurements of the membrane potential of arterial smooth muscle in anesthetized animals and its relationship to changes in artery diameter, Microvasc. Res. 30(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone, Am. J. Physiol. 259:C3–C18.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Cheng, H., Rubart, M., Santana, L. F., Bonev, A. D., Knot, H. J., and Lederer, W. J., 1995, Relaxation of arterial smooth muscle by calcium sparks, Science 270:633–637.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, M., Hashitani, H., Kukuta, H., Yamomoto, Y., and Suzuki, H., 1998, Potassium channels activated in the endothelium-dependent hyperpolarization in guinea-pig coronary artery, J. Physiol. (London) 510:455–465.

    Article  CAS  Google Scholar 

  • Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch. 409:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Osipenko, O. N., Evans, A. M., and Gurney, A. M., 1997, Regulation of resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current, Br. J. Pharmacol 120:1461–1470.

    Article  PubMed  CAS  Google Scholar 

  • Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., Sanders, K. M., and Horowitz, B., 1994, Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles. Am. J. Physiol. 267:0231–0238.

    Google Scholar 

  • Patel, A. J., Lazdunski, M., and Honore, E., 1997, Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes, EMBO J. 16:6615–6625.

    Article  PubMed  CAS  Google Scholar 

  • Perez, G. J., Bonev, A. D., Patlak, J. B., and Nelson, M. T., 1999, Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries, J. Gen. Physiol. 113:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Pfrunder, D., and Kreye, V. A., 1992, Tedisamil inhibits the delayed rectifier K+ current in single smooth muscle cells of the guinea-pig portal vein, Pflügers Arch. 421:22–25.

    Article  PubMed  CAS  Google Scholar 

  • Post, J. M., Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine pulmonary artery: Novel mechanism for hypoxia-induced membrane depolarization, Grc. Res. 77:131–139.

    CAS  Google Scholar 

  • Quayle, J. M., McCarron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol. 265:0363–0370.

    Google Scholar 

  • Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcei, D. N., Dolly, J. O., and Pongs, O., 1992, Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289–294.

    Article  Google Scholar 

  • Rhodes, K. J., Monaghan, M. M., Barrezueta, N. X., Nawoschik, S., Bekele-Arcuri, Z, Matos, M. F., Nakahira, K., Schechter, L. E., and Trimmer, J. S., 1996, Voltage-gated K+ channel β subunits: Expression and distribution of Kvβ1 and Kvβ2 in adult rat brain, J. Neurosci. 16:4846–4860.

    PubMed  CAS  Google Scholar 

  • Roberds. S. L., and Tamkun, M. M., 1991, Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart, Proc. Natl. Acad. Sci. U.S.A. 88:1798–1802.

    Article  PubMed  CAS  Google Scholar 

  • Salter, K. J., and Kozlowski, R. Z., 1996, Endothelin receptor coupling to potassium and chloride channels in isolated rat pulmonary arterial myocytes, J. Pharmacol. Exp. Ther. 279:1053–1062.

    PubMed  CAS  Google Scholar 

  • Salter, K. J., Wilson, C. M., Kato, K., and Kozlowski, R. Z., 1998, Endothelin-1, delayed rectifier K channels, and pulmonary arterial smooth muscle, J. Cardiovasc. Pharmacol. 31(Suppl 1):S81–S83.

    Article  PubMed  CAS  Google Scholar 

  • Schmalz, F., Kinsella, J., Koh, S. D., Vogalis, F., Schneider, A., Flynn, E. R., Kenyon, J. L., and Horowitz, B., 1998, Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles, Am. J. Physiol. 274:G901–G911.

    PubMed  CAS  Google Scholar 

  • Shimizu, S., and Paul, R. J., 1997, The endothelium-dependent, substance P relaxation of porcine coronary arteries resistant to nitric oxide synthesis inhibition is partially mediated by 4-aminopyridine-sensitive voltage-dependent K+ channels, Endothelium 5:287–295.

    Article  PubMed  CAS  Google Scholar 

  • Shimoda, L. A., Sylvester, J. T., and Sham, J. S., 1998, Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1, Am. J. Physiol. 274:L842–L853.

    PubMed  CAS  Google Scholar 

  • Shuttleworth, C. W., Koh, S. D., Bayginov, O., and Sanders, K. M., 1996, Activation of delayed rectifier potassium channels in canine proximal colon by vasoactive intestinal peptide, J. Physiol. (London) 493:651–663.

    CAS  Google Scholar 

  • Smirnov, S. V., and Aaronson, P. I., 1992, Ca2+-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries, J. Physiol. (London) 457:431–454.

    CAS  Google Scholar 

  • Smirnov, S. V., and Aaronson, P. I., 1995, Inhibition of vascular smooth muscle cell K+ currents by tyrosine kinase inhibitors genistein and ST 638, Circ. Res. 76:310–316.

    Article  PubMed  CAS  Google Scholar 

  • Smirnov, S. V., Robertson, T. P., Ward, J. P., and Aaronson, P. I., 1994, Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells, Am. J. Physiol. 266:H365–H370.

    PubMed  CAS  Google Scholar 

  • Snetkov, V. A., Hirst, S. J., Twort, C. H. C., and Ward, J. P. T., 1995, Potassium currents in human freshly isolated bronchial smooth muscle cells, Br. J. Pharmacol. 115:1117–1125.

    Article  PubMed  CAS  Google Scholar 

  • Sobey, C. G., and Faraci, F. M., 1999, Role of voltage-dependent K+ channels and soluble guanylate cyclase in dilator responses of the basilar artery to nitric oxide, Br. J. Pharmacol. 126(6):1437–1443.

    Article  PubMed  CAS  Google Scholar 

  • Sturek, M., Stehno-Bittel, L., and Obye, P., 1991, Modulation of ion channels by calcium release in coronary artery smooth muscle, in: Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells (N. Sperelakis, and H. Kuriyama, eds.), Elsevier, New York pp. 65–80.

    Google Scholar 

  • Taguchi, H., Heistad, D. D., Kitazono, T., and Faraci, F. M., 1995, Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca2+-dependent K+ channels, Circ. Res. 76:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Tamkun, M. M., Bennett, P. B., and Snyders, D. J., 1995, Cloning and expression of human cardiac potassium channels, in: Cardiac Electrophysiology. From Cell to Bedside (D. P. Zipes and J. Jalife, eds.), Sanders, Philadelphia pp. 21–31.

    Google Scholar 

  • Taniguchi, J., Furukawa, K. I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Tare, M., Parkington, H. C., Coleman, H. A., Neild, T. O., and Dusting, G. J., 1990, Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium, Nature 346:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Thornbury, K. D., Ward, S. M., and Sanders, K. M., 1992, Participation of fast-acting, voltage-dependent K currents in electrical slow waves of colonic circular muscle, Am. J. Physiol. 263:C226–C236.

    PubMed  CAS  Google Scholar 

  • Volk, K. A., Shibata, E. F., 1993, Single delayed rectifier potassium channels from rabbit coronary artery myocytes. Am. J. Physiol. 264(4pt 2):H1146–1153.

    PubMed  CAS  Google Scholar 

  • Volk, K. A., Matsuda, J. J., and Shibata, E. F., 1991, A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells, J. Physiol. (London) 439:751–768.

    CAS  Google Scholar 

  • Waldron, G. J., and Cole, W. C, 1999, Activation of vascular smooth muscle K+ channels by endotheliumderived relaxing factors, Clin. Exp. Pharmacol. Physiol. 26:180–184.

    Article  PubMed  CAS  Google Scholar 

  • Waldron, G. J., Iftinca, M., Clément-Chomienne, O., Triggle, C. R., and Cole, W. C, 1999, Direct block of voltage-gated K+ current of vascular myocytes by clotrimazole not involving inhibition of cytochrome P450, Biophys. J. 76:A188.

    Article  Google Scholar 

  • Walsh, M. P., 1994, Regulation of vascular smooth muscle tone, Can. J. Physiol. Pharmacol. 72:919–936.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Mori, Y., and Koren, G., 1994, Expression of Kvl.5 in the rat tissues and the mechanism of cell specific regulation of Kvl.5 gene by cAMP, Biophys. J. 66:207A.

    Article  Google Scholar 

  • Wang, J., Juhaszova, M., Rubin, L. J., and Yuan, X. J., 1997, Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells, J. Clin. Invest. 100:2347–2353.

    Article  PubMed  CAS  Google Scholar 

  • Weir, E. K., Reeve, H. L., Huang, J. M. C., Michelakis, E., Nelson, D. P., Hampl, V., and Archer, S. L., 1996, Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction, Circulation 94:2216–2220.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Z., Sperelakis, N., NofFsinger, A., and Fenoglio-Preiser, A., 1995, Potassium currents in rat colonic smooth muscle cells and changes during development and aging, Pflügers Arch. 430:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., 1995, Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes, Circ. Res. 77:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1995, Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes, Am. J. Physiol. 268:C259–C270.

    PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X. J., Wang, J., Juhaszova, M., Golovina, V. A., and Rubin, L. J., 1998, Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am. J. Physiol. 274:L621– L635.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Bonev, A. D., Nelson, M. T., and Mawe, G. M., 1993, Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells, Am. J. Physiol. 265:C1552–C1561.

    PubMed  CAS  Google Scholar 

  • Zhao, Y. J., Wang, J., Rubin, L. J., and Yuan, X. J., 1997, Inhibition of K(V) and K(Ca) channels antagonizes NO-induced relaxation in pulmonary artery, Am. J. Physiol. 272:H904–H912.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cole, W.C., Walsh, M.P. (2001). Delayed Rectifier K+Channels of Vascular Smooth Muscle: Characterization, Function, and Regulation by Phosphorylation. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics