Skip to main content

Modulation of Vascular K+Channels by Extracellular Messengers

  • Chapter

Abstract

There can be no doubt from what is now a considerable volume of literature that a host of endogenous extracellular messengers activate or inhibit vascular K+ channels directly or via intracellular or intercellular coupling mechanisms. It is also true, however, that some investigators have reported that K+ channel blockers have no effect on the actions of vasodilators and vasoconstrictors that have been suggested by other authors to involve K+ channels. Such apparent contradictions may be explained in some cases by the vasculature’s heterogeneity—between species and vascular beds, and the location, size, and type of blood vessel in question. However, this is only one possible explanation. Blood vessels also seem to have a wealth of parallel or backup mechanisms. As an example, for illustration purposes, a vasodilatory extracellular messenger may simultaneously activate K+ channels and suppress voltage-gated Ca2+ channels in vascular smooth muscle cells. Either effect may be sufficient for full vasodilation such that if one effect is prevented experimentally, there is no change in the size of the vasodilation. This is a parallel system. Alternatively, a backup system may exist whereby a mechanism that is not normally operative becomes essential in a certain condition, perhaps during or after ischemia. Developing this further, it is plausible (and there is supporting evidence) that vasoconstrictor and vasodilator mechanisms have commonality and thus interact in such a way that a vasodilatory mechanism is negated by one vasoconstrictor mechanism but not another. The combination of biological complexity, experimental variability, and the different experimental conditions used by investigators has, perhaps not surprisingly, produced a spectrum of conclusions from an essential functional role of K+ channels to no role at all.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalkjaer, C. and Poston, L., 1996, Effects of pH on vascular tension: Which are the important mechanisms? J. Vasc. Res. 33(5):347–359.

    Article  PubMed  CAS  Google Scholar 

  • Adeagbo, A. S. O., and Malik, K. U., 1991, Contribution of K+ channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries, J. Pharmacol. Exp. Ther. 258:452–458.

    PubMed  CAS  Google Scholar 

  • Adeagbo, A. S. O., and Oriowo, M. A., 1998, Histamine receptor subtypes mediating hyperpolarization in the isolated, perfused rat mesenteric pre-arteriolar bed, Eur. J. Pharmacol. 347(2–3):237–244.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S. D., and Hume, J. R., 1997, pH regulation of voltage-dependent K+ channels in canine pulmonary arterial smooth muscle cells, Pflügers Arch. 433:758–765.

    Article  PubMed  CAS  Google Scholar 

  • Aiello, E. A., Walsh, M. P., and Cole, W. C., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 268:H926–H934.

    PubMed  CAS  Google Scholar 

  • Aiello, E. A., Malcolm, A. T., Walsh, M. P., and Cole, W. C., 1998, Beta-adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells, Am. J. Physiol. 275:H448–H459.

    PubMed  CAS  Google Scholar 

  • Archer, S. L., Huang, M. C., Reeve, H. L., Hampi, V., Tolarova, S., Michelakis, E., and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct mysocytes in conduit and resistance arteries determines their responses to nitric oxide and hypoxia, Circ. Res. 78:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Armstead, W. M., 1997, Role of activation of calcium-sensitive K+ channels and cAMP in opioid-induced pial artery dilation, Brain Res. 747:252–258.

    Article  PubMed  CAS  Google Scholar 

  • Armstead, W. M., 1998a, Contribution of KCa channels activation to hypoxic cerebrovasodialtion does not involve NO, Brain Res. 799:44–48.

    Article  PubMed  CAS  Google Scholar 

  • Armstead, W. M., 1998b, Relationship among NO, the KATP channel, and opioids in hypoxic pial artery dilation in Am. J. Physiol. 275:H988–H994.

    PubMed  CAS  Google Scholar 

  • Bari, F., Errico, R. A., Louis, T. M., and Busija, D. W., 1996, Interaction between ATP-sensitive K+ channels and nitric oxide on pial arterioles in piglets, J. Cereb. Blood Flow Metab. 16:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, R. S., and White, R. E., 1998, Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity, Am. J. Physiol. 275:H1283–H1289.

    PubMed  CAS  Google Scholar 

  • Barman, S. A., 1997a, Pulmonary vasoreactivity to serotonin during hypoxia is modulated by ATP-sensitive potassium channels J. Appl. Physiol. 83:569–574.

    PubMed  CAS  Google Scholar 

  • Barman, S. A., 1997b, Role of calcium-activated potassium channels and cyclic nucleotides on pulmonary vasoreactivity to serotonin, Am. J. Physiol. 273:L142–L147.

    PubMed  CAS  Google Scholar 

  • Beech, D. J., 1997, Actions of neurotransmitters and other messengers on Ca2+ channels and K+ channels in smooth muscle cells, Pharmacol. Ther. 73:91–119.

    Article  PubMed  CAS  Google Scholar 

  • Beech, D. J. and Bolton, T. B., 1989, Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein, Br. J. Pharmacol. 98:851–864.

    Article  PubMed  CAS  Google Scholar 

  • Bell, D., and McDermott, B. J., 1996, Calcitonin gene-related peptide in the cardiovascular system: Characterisation of receptor populations and their (patho)physiological significance Pharmacol. Rev. 48:253–288.

    PubMed  CAS  Google Scholar 

  • Benham, C. D., and Bolton, T. B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit, J. Physiol, (London) 381:385–406.

    CAS  Google Scholar 

  • Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membranes, Pflügers Arch. 403:120–127.

    Article  PubMed  CAS  Google Scholar 

  • Berg, T., and Koteng, O, 1997, Signalling pathways in bradykinin- and nitric oxide-induced hypotension in the normotensive rat; role of K+-channels, Br. J. Pharmacol. 121:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  • Berger, M. G., Vandier, C., Bonnet, P., Jackson, W. F., and Rusch, N. J., 1998, Intracellular acidosis differentially regualtes Kv channels in coronary and pulmnary vascular muscle, Am. J. Physiol. 275:H1351–H1359.

    PubMed  CAS  Google Scholar 

  • Berne, R. M., Rubio, R., amd Curnish, R. R., 1974, Release of adenosine from ischemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides, Circ. Res. 35:262–271.

    Article  CAS  Google Scholar 

  • Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle, Nature 368:850–853.

    Article  PubMed  CAS  Google Scholar 

  • Bonev, A. D., and Nelson, M. T., 1996, Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C, J. Gen. Physiol. 108:315–323.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, P., Rusch, N. J., and Harder, D. R., 1991, Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells, Pflügers Arch. 418:292–296.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, J.-F., Dumont, E., and Lamontagne, D., 1994, Evidence that prostaglandins I2, E2„ and D2 may activate ATP-sensitive potassium channels in the isolated rat heart, Cardiovasc. Res. 28:901–905.

    Article  PubMed  CAS  Google Scholar 

  • Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and Maclntyre, I., 1985, Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56.

    Article  PubMed  CAS  Google Scholar 

  • Bychkov, R., Gollash, M., Steinke, T., Ried, C., Luft, F. C., and Haller, H., 1997, Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries, J. Pharmacol. Exp. Ther. 285:293–298.

    Google Scholar 

  • Byrne, N. G., and Large, W. A., 1988, Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein, J. Physiol, (London) 404:557–573.

    CAS  Google Scholar 

  • Cabell, F., Weiss, D. S., and Price, J. M., 1994, Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca2+-activated K+ channels. Am. J. Physiol. 267:H1455–H1460.

    PubMed  CAS  Google Scholar 

  • Chataigneau, T., Félétou, M., Thollon, C., Villeneuve, N., Vilaine, J.-P., Duhault, J., and Vanhoutte, P. M., 1998, Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries, Br. J. Pharmacol. 123:968–974.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, P. C. and Bidani, A. K.,1990, Adenosine and renal function, in: Adenosine and Adenosine Receptors (M. Williams, ed.). The Humana Press, Clifton, New Jersey, pp 335–380.

    Chapter  Google Scholar 

  • Clapp, L. H., Turcato, S., Hall, S., and Baloch, M., 1998, Evidence that Ca++-activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost, Eur. J. Pharmacol. 356:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R. A., Plane, F., Najibi, S., Huk, I., Malinski, T., and Garland, C. J., 1997, Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery, Proc. Natl. Acad. Sci. U.S.A. 94:4193–4198.

    Article  PubMed  CAS  Google Scholar 

  • Danialou, G., Vicaut, E., Sambe, A., Aubier, M., and Boczkowski, J., 1997, Predominant role of A1 adenosine receptors in mediating adenosine induced vasodilation of rat diaphragmatic arterioles: Involvement of nitric oxide and the ATP-dependent K+ channels, Br. J. Pharmacol. 121:1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Darkow, D. J., Lu, L., and White, R. E., 1997, Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP, Am. J. Physiol. 272:H2765–H2773.

    PubMed  CAS  Google Scholar 

  • Dart, C., and Standen, N. B., 1993, Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery, J. Physiol, (London) 471:767–786.

    CAS  Google Scholar 

  • Dart, C., and Standen, N. B., 1995, Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery, J. Physiol, (London) 483:29–30.

    CAS  Google Scholar 

  • Deka, D. K., Raviprakash, V., and Mishra, S. K., 1997, K(ATP) channels do not mediate vasodilation by 3-morpholinosydnonimine in goat coronary artery, Eur. J. Pharmacol. 330(2):157–164.

    Article  PubMed  CAS  Google Scholar 

  • Desilets, M., Driska, S. P., and Baumgarten, C. M., 1989, Current fluctuations and oscillations in smooth muscle cells from hog carotid artery: Role of the sarcoplasmic reticulum, Circ Res. 65:708–722

    Article  PubMed  CAS  Google Scholar 

  • Dong, H., Waldorn, G. J., Cole, W. C., and Triggle C. R., 1998, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br. J. Pharmacol. 123:821–832.

    Article  PubMed  CAS  Google Scholar 

  • Dumas, M., Dumas, J.-P., Rochette, L., Advenier, C., and Guidicelli, J.-F., 1997, Role of potassium channels and nitirc oxide in the effects of iloprost and prostaglandin E1 on hypoxic vasoconstriction in the isolated perfused lung of the rat, Br. J. Pharmacol. 120:405–410.

    Article  PubMed  CAS  Google Scholar 

  • Duncker, D. J., van Zon, N. S., Pavek, T. J., Herrlinger, S. K., and Bache, R. J., 1995, Endogeneous adenosine mediates coronary vasodilation during exercise after KATP blockade, in J. Clin. Invest. 95:285–295.

    Article  PubMed  CAS  Google Scholar 

  • Durante, W., Kroll, M. H., Christodoulides, N., Peyton, K. J., and Schafer, A. I., 1997, Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells, Circ. Res. 80:557–564.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, D. M., Hopkins, N., McBride, C., and Keef, K. D., 1998, Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: Role of epoxyeicosatrienoic acid, Br. J. Pharmacol 124:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson, L., MacKenzie, E. T., and McCulloch, J., 1993, Cerebral Blood Flow and Metabolism, Raven Press, New York.

    Google Scholar 

  • Edwards, F. R., and Hirst, G. D. S., 1988, Inward rectification in submucosal arterioles of guinea-pig ileum in J. Physiol, (London) 404:437–454.

    CAS  Google Scholar 

  • Edwards, F. R., Hirst, G. D. S., and Silverberg, G. D., 1988, Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation, J. Physiol, (London) 404:455–466.

    CAS  Google Scholar 

  • Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries, Nature 396:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Faraci, F. M., Breese, K. R., and Heistad, D. D., 1994, Cerebral vasodilation during hypercapnia: Role of glibenclamide-sensitive potassium channels and nitric oxide, Stroke 25:1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Fukamo, Y., Toki, Y., Numaguchi, Y., Nakashima, Y., Mukawa, H., Matsui, H., Okumura, K., and Ito, T., 1998, Nitroglycerin-induced aortic relaxation mediated by calcium-activated potassium channel is markedly diminished in hypertensive rats, Life Sci. 63:1047–1055.

    Article  Google Scholar 

  • Gambone, L. M., Murray, P. A., and Flavahan, N. A., 1997, Synergistic interaction between endotheliumderived NO and prostacyclin in pulmonary artery: Role for K+ ATP channels, Br. J. Pharmacol 121:271–279.

    Article  PubMed  CAS  Google Scholar 

  • Geary, G. G., Krause, D. N., and Duckies, S. P., 1997, Melatonin directly constricts rat cerebral arteries through modulation of potassium channels, Am. J. Physiol. 273:H1530–H1536.

    PubMed  CAS  Google Scholar 

  • Geary, G. G., Duckies, S. P. and Krause, D. N., 1998, Effect of melatonin in the rat tail artery: Role of K+ channels and endothelial factors, Br. J. Pharmacol 123:1533–1540.

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Ma, Y.-M., Flack, J. R., Roman, R. J., vanRollins, M., and Harder, D. R., 1992, Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle, Am. J. Physiol. 263:H519–H525.

    PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Bonnet, P., Greene A. S., England, S. K., Rusch, N. J., Lombard, J. H., and Harder, D. R., 1994, Hypoxia increases the activity of Ca2+-sensitive K+ channels in cat cerebral arterial muscle cell membranes, Pflügers Arch. 428:621–630.

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Kaldunski, M., Jacobs, E. R., Harder, D. R., and Roman, R. J., 1996, Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles, Am. J. Physiol. 270:F69–F81.

    PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Lange, A. R., Narayan, J., Aebly, M. R., Jacobs, E. R., and Harder, D. R., 1998, Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current, J. Physiol, (London) 507:771–781.

    Article  CAS  Google Scholar 

  • Gidday, J. M., Maceren, R. G., Shah, A. R., Meier, J. A., and Zhu Y., 1996, KATP channels mediate adenosine-induced hyperemia in retina, Invest. Ophthalmol. Visual Sci. 37:2624–2633.

    CAS  Google Scholar 

  • Gordienko, D. V., Clausen, C., and Goligorsky, M. S., 1994, Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries, Am. J. Physiol. 266:25–41.

    Google Scholar 

  • Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G., 1994, Pharmacological characterisation of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines, Mol. Pharmacol. 45:1227–1234.

    PubMed  CAS  Google Scholar 

  • Guibert, C., and Beech, D. J.,1999, Positive and negative coupling of the endothelin ETA receptor to Ca2+-permeable channels in rabbit cerebral cortex arterioles, J. Physiol, (London) 514:843–856.

    Article  CAS  Google Scholar 

  • Hall, S., Turcato, S., and Clapp, L., 1996, Abnormal activation of K+ channels underlies relaxation to bacterial lipopolysaccharide in rat aorta, Biochem. Biophys. Res. Commun. 224:184–190.

    Article  CAS  Google Scholar 

  • Halpern, W., and Kelley, M., 1991, In vitro methodology for resistance arteries. Blood Vessels 28:245–251.

    PubMed  CAS  Google Scholar 

  • Hashemzadeh-Gargari, H., and Rembold, C. M., 1992, Histamine activates whole cell K+ currents in swine carotid arterial smooth muscle cell, Comp. Biochem. Physiol. C 102(l):33–37.

    Article  PubMed  CAS  Google Scholar 

  • Hayabuchi, Y., Nakaya, Y., Matsuoka, S., and Kuroda, Y., 1998a, Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K+ channels, Heart Vessels 13:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Hayabuchi, Y., Nakaya, Y., Matsuoka, S., and Kuroda, Y., 1998b, Effect of acidosis on Ca2+-activated K + channels in cultured porcine coronary artery smooth muscle cells, Pflügers Arch. 436:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Helliwell, R. M., Wang, Q., Hogg, R. C., and Large, W. A., 1994, Synergistic action of histamine and adenosine triphosphate on the response to noradrenaline in rabbit pulmonary artery smooth muscle cells, Pflügers Arch. 426:433–439.

    Article  PubMed  CAS  Google Scholar 

  • Henderickx, H., and Casteels, R., 1974, Electrogenic sodium pump in arterial smooth muscle cells, Pflügers Arch. 346:299–306.

    Article  Google Scholar 

  • Hill, C. E., Kirton, A., Wu, D. D., and Vanner, S. J., 1997, Role of maxi-K+ channels in endothelin-induced vasoconstriction of mesenteric and submucosal arterioles, Am. J. Physiol. 273: G1087–G1093.

    PubMed  CAS  Google Scholar 

  • Hoang, L. M., and Mathers, D. A., 1998, Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway, Br. J. Pharmacol. 123:5–12.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, R. C., Wang, Q., and Large, W. A., 1994, Effects of C1 channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein, Br. J. Pharmacol. 111:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • Holz, F. G., and Steinhausen, M., 1987, Renovascular effects of adenosine receptor agonists, Renal Physiol 10:272–282.

    PubMed  CAS  Google Scholar 

  • Hu, S., and Kim, H. S., 1993, Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid, Eur. J. Pharmacol. 230:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S. L., Kim, H. S., and Jeng, A. Y., 1991, Dual action of endothelin-1 on the Ca2+-activated K+ channel in smooth-muscle cells of porcine coronary-artery, Eur. J. Pharmacol. 194:31–36.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S., Kim, H. S., Savage, P., and Jeng, A. Y., 1997, Activation of BK(Ca) channel via endothelin ET(A) receptors in porcine coronary artery smooth muscle cells, Eur. J. Pharmacol 324:277–282.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., and Kwok, K. H., 1997, Effects of putative K+ channel blockers on β-adrenoceptor-mediated vasorelaxation of rat mesenteric artery, J. Cardiovasc. Pharmacol 29:515–519.

    Article  PubMed  CAS  Google Scholar 

  • Husken, B. C., Pfaffendorf, M., and van Zwieten, P. A., 1997, Contribution of ATP-sensitive potassium channels to β-adrenoceptor-mediated responses, Naunyn-Schmiedebergs Arch. Pharmacol 355:97–102.

    PubMed  CAS  Google Scholar 

  • Imig, J. D., Zou, A.-P., Stec, D. E., Harder, D. R., Flack, J. R., and Roman, R. J., 1996, Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles, Am. J. Physiol. 270:R217–R227.

    PubMed  CAS  Google Scholar 

  • Ishida, Y., and Honda, H., 1993, Inhibitory action of 4-aminopyridine on Ca2+-ATPase of the mammalian sarcoplasmic reticulum, J. Biol. Chem. 268:4021–4024.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine Hl-receptor stimulation in rabbit coronary artery cells, J. Physiol, (London) 468:379–400.

    CAS  Google Scholar 

  • Ishizaka, H., and Kuo, L., 1996, Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle, Circ. Res. 78:50–57.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, W. F., Konig, A., Dambacher, T., and Busse, R., 1993, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am. J. Physiol. 264:H238–H243.

    PubMed  CAS  Google Scholar 

  • Jensen, B. S., Strobaek, D., Christophersen, P., Jorgensen, T. D., Hansen, C., Silahtaroglu, A., Olesen, S.-P., and Ahring, P. K., 1998, Characterisation of the cloned human intermediate-conductance Ca2+-activated K+ channel, Am. J. Physiol. 275:C848–C856.

    PubMed  CAS  Google Scholar 

  • Jiang, C, and Collins, P., 1994, Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide, Br. J. Pharmacol. 111:711–716.

    Article  PubMed  CAS  Google Scholar 

  • Kang, T. M., So, I., and Kim, K. W., 1995, Caffeine- and histamine-induced oscillations of KCa current in single smooth muscle cells of rabbit cerebral artery, Pflügers Arch. 431:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, H., and Katusic, Z. S., 1997, Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis, Stroke 28:433–438.

    Article  PubMed  CAS  Google Scholar 

  • Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V. J., and Singer, J. J., 1992, Both membrane stretch and fatty acids directly activate large conductance Ca++-activated K+ channels in vascular smooth muscle cells, FEBS Lett. 297:24–28.

    Article  PubMed  CAS  Google Scholar 

  • Kitakaze, M, Takshima, S., Minamino, T., Node, K, Shinozaki, Y., Mori, H., and Hori, M., 1997, Temporary acidosis during reperfusion limits myocardial infarct size in dogs, Am. J. Physiol. 272:H2071–H2078.

    PubMed  CAS  Google Scholar 

  • Kitazono, T., Faraci, F. M, and Heistad, D. D., 1993, Role of ATP-sensitive K+ channels in CGRP-induced dilation in vivo, Am. J. Physiol. 265:H581–H585.

    PubMed  CAS  Google Scholar 

  • Kitazono, T., Ibayashi, S., Nagao, T., Fujii, K., and Fujishima, M., 1997, Role of Ca2+-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo, Br. J. Pharmacol. 120:102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kleppisch, T., and Nelson, M. T., 1995a, ATP-sensitive K+ currents in cerebral arterial smooth muscle: Pharmacological and hormonal modulation, Am. J. Physiol. 269:H1634–H1640.

    PubMed  CAS  Google Scholar 

  • Kleppisch, T., and Nelson, M. T., 1995b, Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase, Proc. Natl. Acad. Sci., U.S.A. 92:12441–12445.

    Article  PubMed  CAS  Google Scholar 

  • Klockner, U., and Isenberg, G., 1991, Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current, Pflügers Arch. 418:168–175.

    Article  PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmerman, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifer K+ channels, J. Physiol, (London) 492:419–430.

    CAS  Google Scholar 

  • Kontos, H. A., Raper, A. J., and Patterson, J. L., 1977, Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels, Stroke 8:258–360.

    Article  Google Scholar 

  • Krippeitdrews, P., Haberland, C., Fingerle, J., Drews, G., and Lang, F., 1995, Effect of H2O2 on membrane potential and [Ca2+]i- of cultured rat arterial smooth-muscle cells, Biochem. Biophys. Res. Commun. 209:139–145.

    Article  CAS  Google Scholar 

  • Kubo, M., Nakaya, Y., Matsuoka, S., Saito, K., and Kuroda, Y., 1994, Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells, Circ. Res. 74:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, M., Quayle, J. M., and Standen, N. B., 1997, Angiotensin II inhibition through ATP-sensitive K+ currents in rat smooth muscle cells through protein kinase C, J. Physiol, (London) 503:489–496.

    Article  CAS  Google Scholar 

  • Kuo, L., and Chancellor, J. D., 1995, Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium, Am. J. Physiol. 269:H541–H549.

    PubMed  CAS  Google Scholar 

  • Ma, Y.-H., Gebremedhin, D., Schwartzman, M. L., Falck, J. R., Clark, J. E., Masters, B. S., Harder, D. R., and Roman, R. J., 1993, 20-Hydroxyeicosatetranoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries, Circ. Res. 72:126–130.

    Article  PubMed  CAS  Google Scholar 

  • Martens, J. R., and Gelband, G. H., 1996, Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension, Circ. Res. 79:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Mayhan, W. G., and Faraci, F. M., 1993, Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels, Am. J. Physiol. 265:H152–H157.

    PubMed  CAS  Google Scholar 

  • McCarron, J. G., and Halpern, W., 1990, Potassium dilates rat cerebral arteries by two independent mechanisms, Am. J. Physiol. 259:H902–H908.

    PubMed  CAS  Google Scholar 

  • McGiff, J. C., 1991, Cytochrome P450 metabolism of arachidonic acid, Annu. Rev. Pharmacol. Toxicol. 31:339–369.

    Article  PubMed  CAS  Google Scholar 

  • McKay, M. K., and Hester, R. L., 1996, Role of nitric oxide, adenosine, and ATP-sensitive potassium channels in insulin-induced vasodilation, Hypertension 28:202–208.

    Article  PubMed  CAS  Google Scholar 

  • Meno, J. R., Ngai, A. C., Ibayashi, S., and Winn, H. R., 1991, Adenosine release and changes in pial arteriolar diameter during transient cerebral ischaemia and reperfusion, J. Cereb. Blood Flow Metab. 11:986–993.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Hudetz, A. G., Knaus, H.-G., Rusch, N. J. 1998, Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rates, Circ. Res. 82:729–737.

    Article  PubMed  CAS  Google Scholar 

  • Minami, K., Hirata, Y., Tokumura, A., Nagaya, Y., and Fukuzawa, K., 1995, Protein-kinase C-independent inhibition of the Ca2+-activated K+ channel by angiotensin-II and endothelin-1, Biochem. Pharmacol. 49:1051–1056.

    Article  PubMed  CAS  Google Scholar 

  • Mistry, D. K., and Garland, C. J., 1998, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, Br. J. Pharmacol. 124:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., and Nakaya, Y., 1995, Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase, Basic Res. Cardiol. 90:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, Y., Nakaya, Y., Wakatsuki, T., Nakaya, S., Fujino, K., Saito, K., and Inoue, I., 1992, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery, Circ. Res. 70:612–616.

    Article  PubMed  CAS  Google Scholar 

  • Morii, S., Ngai, A.C., Ko, A. R., and Winn, H. R., 1987, Role of adenosine in regulation of cerebral blood flow: Effects of theophylline during normoxia and hypoxia, Am. J. Physiol. 253:H165–H175.

    PubMed  CAS  Google Scholar 

  • Muira, H., and Gutterman, D. D., 1998, Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P450 monooxygenase and Ca++-activated K+ channels, Circ. Res. 83:501–507.

    Article  Google Scholar 

  • Muraki, K., Imaizumi, Y., Ohya, S., Sato, K., Takii, T., Onozaki, K., and Watanabe, M., 1997, Apamin-sensitive Ca2+-dependent K+ current and hyperpolarization in human endothelial cells, Biochem. Biophys. Res. Commun. 236:340–343.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995, Nitric oxide hyperpolarises rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol, (London) 486:47–58.

    CAS  Google Scholar 

  • Nakashima, M., and Vanhoutte, P. M., 1995, Isoproterenol causes hyperpolarization through opening of ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein, J. Pharmacol. Exp. Ther. 272:379–384

    PubMed  CAS  Google Scholar 

  • Neliat, G., Masson, F., and Gargouil, Y. M., 1989, Modulation of the spontaneous transient outward currents by histamine in single vascular smooth muscle cells, Pflügers Arch. 414 (Suppl. 1):S186–S187.

    Article  PubMed  Google Scholar 

  • Ney, P., and Feelisch, M., 1995, Vasodilator effects of PGE1 in the coronary and systemic circulation of the rat are mediated by ATP-sensitive potassium (K+) channels, Agents Actions-Suppl. 45:71–76.

    CAS  Google Scholar 

  • Nilius, B., Schwarz, G., and Droogmans, G., 1993, Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells, J.Physiol. (London) 472:359–371.

    CAS  Google Scholar 

  • Okazaki, K., Endou, M., and Okumura, F., 1998, Involvement of barium-sensitive K+ channels in endothelium-dependent vasodilation produced by hypercapnia in rat mesenteric vascular beds, Br. J. Pharmacol. 125:168–185.

    Article  PubMed  CAS  Google Scholar 

  • Oltman, C. I., Weitraub, N. L., VanRollins, M., and Dellsperger, K. C., 1998, Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation, Circ. Res. 83:932–939.

    Article  PubMed  CAS  Google Scholar 

  • Onoue, H., and Katusic, Z. S., 1998, Subarachnoid hemorrhage and the role of potassium channels in relaxations of canine basilar artery to nitrovasodilators, J. Cereb. Blood Flow Metab. 18:186–195.

    Article  PubMed  CAS  Google Scholar 

  • Osipenko, O. N., Evans, A. M., and Gurney, A. M., 1997, Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current, Br. J. Phamacol. 120:1461–1470.

    Article  CAS  Google Scholar 

  • Park, M. K., Lee, S., H., Lee, S. J., Ho, W. K., and Earm, Y. E., 1995, Different modulation of Ca-activated K channels by the intracellular redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit, Pflügers Arch. 430:308–314.

    Article  PubMed  CAS  Google Scholar 

  • Pelligrino, D. A., Wang, Q., Koenig, H. M., and Albrecht, R. F., 1995, Role of nitric oxide, adenosine, N-methyl-D-aspartate, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats, Brain Res. 704:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Peng, W., Michael, J. R., Hoidal, J. R., Karwande, S. V., and Farrukh, I. S., 1998, ET-1 modulates KCa-channel activity and arterial tension in normoxic and hypoxic human pulmonary vasculature, Am.J. Physiol. 275:L729–L739.

    PubMed  CAS  Google Scholar 

  • Plane, F., Wiley, K. E., Jeremy, J. Y., Cohen, R. A., and Garland, C. J., 1998, Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide donors in the rabbit isolated carotid artery, Br. J. Pharmacol. 123:1351–1358.

    Article  PubMed  CAS  Google Scholar 

  • Pluta, R. M., Boock, R. J., Afshar, J. K., Clouse, K., Bacic, M., Ehrenreich, H., and Oldfield, E. H., 1997, Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage, J. Neurosurg. 87:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Price, J. M., Cabell, J. F., and Hellerman, A.,1996, Inhibition of cAMP mediated relaxation in rat coronary vessels by block of Ca++ activated K+ channels, Life Sci. 58:2225–2232.

    Article  PubMed  CAS  Google Scholar 

  • Price, J. M., Baker, C. H., and Bond, R. F., 1997, Calcium-activated potassium channel-mediated arteriolar relaxation during endotoxic shock, Shock 7:294–299.

    Article  PubMed  CAS  Google Scholar 

  • Prior, H. M., Yates, M. S., and Beech, D. J.,1998a, Functions of large conductance (BKCa), delayed rectifier (Kv) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery, J. Physiol. (London) 511:159–169.

    Article  CAS  Google Scholar 

  • Prior, H. M., Webster, N., Quinn, K. V., Beech, D. J., and Yates, M. S., 1998b, K+-induced dilation in a small renal artery: No role for inward rectifier K+ channels, Cardiovasc. Res. 37:780–790.

    Article  PubMed  CAS  Google Scholar 

  • Prior, H. M., Yates, M. S., and Beech, D. J., 1998c, Role of K+ channels in A2A adenosine receptor-mediated dilation of the pressurised renal arcuate artery, Br. J. Pharmacol. 126:494–500.

    Article  Google Scholar 

  • Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1994, Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J. Physiol. (London) 475:9–13.

    CAS  Google Scholar 

  • Quayle, J. M., Dart, C., and Standen, N. B., 1996, The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle, J. Physiol. (London) 494:715–726.

    CAS  Google Scholar 

  • Randall, M. D.,1995, The involvement of ATP-sensitive potassium channels and adenosine in the regulation of coronary flow in the isolated perfused rat heart, Br. J. Pharmacol. 116:3068–3074.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., and McCulloch, A. I., 1995, The involvement of ATP-sensitive potassium channels in β-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed, Br. J. Pharmacol. 115:607–612.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., and Polokoff, M. A., 1994, Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology, Pharmacol. Rev. 46:325–415.

    PubMed  CAS  Google Scholar 

  • Rusko, J., Li, L., and van Breemen, C., 1995,17β-Estradiol stimulation of endothelial K+ channels, Biochem. Biophys. Res. Commun. 214:367–372.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, Y., and Saito, K., 1998, Reciprocal interactions among neuropeptides and adenosine in the cardiovascular system of rats: A role of K(ATP) channels, Eur. J. Pharmacol. 345:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, Y., Yoshikawa, N., Akima, M., and Saito, K., 1998, Role for adenosine A1 and A2 receptors in femoral vasodilation induced by intra-arterial adenosine in rabbits, Eur. J. Pharmacol. 353:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Salter, K. J., and Kozlowski, R. Z., 1996, Endothelin receptor coupling to potassium and chloride channels in isolated rat pulmonary arterial myocytes, J. Pharmacol. Exp. Ther. 279:1053–1062.

    PubMed  CAS  Google Scholar 

  • Salter, K. J., and Kozlowski, R. Z., 1998, Differential electrophysiological actions of endothelin-1 on Cl- and K+ currents in myocytes isolated from aorta, basilar and pulmonary artery, J. Pharmacol. Exp. Ther. 284:1122–1131.

    PubMed  CAS  Google Scholar 

  • Salter, K. J., Turner, J. L., Albawarni, S., Clapp, L. H., and Kozlowski, R. Z., 1995, Ca2+-activated Cl- and K+ channels and their modulation by endothelin-1 in rat pulmonary arterial smooth-muscle cells, Exp. Physiol. 80:815–824.

    PubMed  CAS  Google Scholar 

  • Schubert, R., Serebyakov, V. N., Engel, H., and Hopp, H.-H., 1996, Iloprost activates KCa channels of vascular smooth muscle cells: Role of cAMP-dependent protein kinase, Am. J. Physiol. (London) 271:0203- C1211.

    CAS  Google Scholar 

  • Schubert, R., Serebyrakov, V. N., Mewes, H., and Hopp, H.-H., 1997, Iloprost dilates rat small arteries: Role of KATP-channel activation by cAMP-dependent protein kinase, Am. J. Physiol. (London) 272:H1147– H1156.

    CAS  Google Scholar 

  • Scornik, F. S., and Toro, L., 1992, U46619, a thromboxane A2 agonist, inhibits Kca channel activity from pig coronary artery, Am. J. Physiol. 262:C708–C713.

    PubMed  CAS  Google Scholar 

  • Sheridan, B. C, Mclntyre, R. C., Jr., Meldrum, D. R., and Fullerton, D. A., 1997, KATP channels contribute to beta- and adenosine receptor-mediated pulmonary vasorelaxation, Am. J. Physiol. 273:L950–L956.

    PubMed  CAS  Google Scholar 

  • Shimoda, L. A., Sylvester, J. T., and Sham, J. S. K., 1998, Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1, Am. J. Physiol. 274:L842–L853.

    PubMed  CAS  Google Scholar 

  • Smirnov, S. V., and Aaronson, P. I., 1996, Modulatory effects of arachidonic acid on the delayed rectifier K+ current in rat pulmonary arterial myocytes: Structural aspects and involvement of protein kinase C, Circ. Res. 79:20–31.

    Article  PubMed  CAS  Google Scholar 

  • Sobey, C. G., Heistad, D. D., and Faraci, F. M., 1997, Mechanisms of bradykinin-induced cerebral vasodilatation in rats: Evidence that reactive oxygen species activate K+ channels, Stroke 28:2990–2295.

    Google Scholar 

  • Song, Y., and Simard, J. M., 1995, β-Adrenoceptor stimulation activates large-conductance Ca2+-activated K+ channels in smooth muscle cells from basilar artery of guinea pig, Pflügers Arch. 430:984–993.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, R. H., Sokolov, Y., Li, H., Takenas, B., Milici, A. J., Aiyar, J., Nguyen, A., Park, H., Jap, B. K., Hall, J. E., Gutman, G. A., and Chandy, K. G., 1997, Purification, visualisation, and biophysical characterisation of Kvl.3 tetramers, J. Biol. Chem. 272:2389–2395.

    Article  PubMed  CAS  Google Scholar 

  • Sun, C.-W., Alonso-Galicia, M., Taheri, M. R., Flack, J. R., Harder, D. R., and Roman, R. J., 1998, Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles,Circ. Res. 83:1069–1079.

    Article  PubMed  CAS  Google Scholar 

  • Tabrizchi, R., and Lupichuk, S. M., 1995, Vasodilation produced by adenosine in isolated rat perfused mesenteric artery: A role for endothelium, Naunyn-Schmiedeberg’s Arch. Pharmacol. 352:412–418.

    Article  CAS  Google Scholar 

  • Taguchi, H., Heistad, D. D., Kitazono, T., and Faraci, F. M., 1994, ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia, Circ. Res. 74:1005–1008.

    Article  PubMed  CAS  Google Scholar 

  • Takizawa, S., Ozaki, H., and Karaki, H., 1997, Interleukin-lβ-induced, nitric oxide-dependent and -independent inhibition of vascular smooth muscle contraction, Eur. J. Pharmacol. 330:143–150.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, J., Furukawa, K.-I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Toro, L., Amador, M., and Stefani, E., 1990, ANG II inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers, Am. J. Physiol. 258:H912–H915.

    PubMed  CAS  Google Scholar 

  • Toyoda, K., Fujii, K., Ibayashi, S., Kitazono, T., Nagao, T., and Fujishma, M., 1997, Role of ATP-sensitive potassium channels in brain stem circulation during hypotension, Am. J. Physiol. 273:H1342–H1346.

    PubMed  CAS  Google Scholar 

  • Van de Voorde, J., Brochez, V., and Vanheel, B., 1994, Heterogenous effects of histamine on isolated rat coronary arteries, Eur. J. Pharmacol. 271:17–23.

    Article  PubMed  Google Scholar 

  • Van Renterghem, C., Vigne, P., Barhanin, J., Schmid-Alliana, A., Frelin, C., and Lazdunski, M., 1988, Molecular mechanisms of action of the vasoconstrictor peptide endothelin, Biochem. Biophys. Res. Commun. 157:977–985.

    Article  PubMed  Google Scholar 

  • von Beckerath, N., Cyrys, C., Dischner, A., and Daut, A., 1991, Hypoxic vasodilation in isolated, perfused guinea-pig heart: An analysis of the underlying mechanisms, J. Physiol. (London) 442:297–319.

    Google Scholar 

  • Wang, J., Juhaszova, M., Rubin, L. J., and Yuan X.-J., 1997, Hypoxia inhibits gene expression of voltage-gated K+ channel α subunits in pulmonary artery smooth muscle cells, J. Clin. Invest. 100:2347–2353.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., and Large, W. A., 1993, Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery, J. Physiol. (London) 468:125–139.

    CAS  Google Scholar 

  • Wang, R., and Wu, L., 1997, The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells, J. Biol. Chem. 273:8222–8226.

    Google Scholar 

  • Webb, R. C, and Bohr, D. F., 1978, Potassium-induced relaxation as an indicator of Na+,K+-ATPase activity in vascular smooth muscle, Blood Vessels 15:198–207.

    PubMed  CAS  Google Scholar 

  • Wei, E. P., Kontos, H., A., and Beckman, J. S.,1996, Mechanisms of cerebral vasodilatation by superoxide, hydrogen peroxide, and peroxynitrite, Am. J. Physiol. 271:H1262–H1266.

    PubMed  CAS  Google Scholar 

  • Wei, E. P., Kontos, H. A., and Beckman, J. S., 1998, Antioxidants inhibit ATP-sensitive potassium channels in cerebral arterioles, Stroke 29:817–823.

    Article  PubMed  CAS  Google Scholar 

  • Weisbrod, R. M., Grisworld, M. C., Yaghoubi, M., Komalavilas, P., Linclon, T. M., and Cohen, R. A., 1998, Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide, Br. J. Pharmacol 125:1695–1707.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, G. C, Bonev, A. D., Nelson, M. T., and Brayden, J. E., 1996, Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca++ -dependent K+ channels, Circ. Res. 79:1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, G. C., Quayle, J. M., and Standen, N. B., 1998, ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle, J. Physiol. (L ondon) 507:117–129.

    Article  CAS  Google Scholar 

  • White, R. E., Darkow, D. J., and Falvo Lang, J. L., 1995, Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism, Circ. Res. 77:936–942.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. L., Jr., Katz, G. M., Roy-Contancin, L., and Reuben, J. P., 1988, Guanosine 5’-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells, Proc. Natl. Acad. Sci., U.S.A. 85:9360–9364.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Z., and Cheung, D. W., 1994, Neuropeptide Y inhibits Ca2+-activated K+ channels in vascular smooth muscle cells from the rat tail artery, Pflügers Arch. 429:280–284.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., and Lee, K. S., 1996, Dual effects of arachidonic acid on ATP-sensitive K+ current of coronary smooth muscle cells, Am. J. Physiol. 270.-H1957–H1962.

    PubMed  Google Scholar 

  • Yamazaki, J., Sato, K., Ohara, F., and Nagao, T., 1998, Direct activation of endothelial NO pathway by Ba2+ in canine coronary artery, Br. J. Pharmacol. 124:1149–1158.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Goldman, W. F., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1993, Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes, Am. J. Physiol. 264:L116–L123.

    PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Goldman, W. F., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y.-J., Wang, J., Rubin, L. J., and Yuan, X.-J., 1997, Inhibition of Kv and KCa channels antagonizes NO-induced relaxation in pulmonary artery, Am. J. Physiol. 272:H904–H912.

    PubMed  CAS  Google Scholar 

  • Zou, A.-P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J., 1996, Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity, Am. J. Physiol. 270:F822–F832

    PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Edwards, G., Weston, A. H., Larsson, B., and Hogestatt, E. D., 1997, Involvement of voltage-depedendent potassium channels in the EDHF-mediated ralxation of rat hepatic artery, Br. J. Pharmacol. 121:141–149.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beech, D.J., Cheong, A., Flemming, R., Guibert, C., Xu, S.Z. (2001). Modulation of Vascular K+Channels by Extracellular Messengers. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics