Skip to main content

Overview: Molecular Physiology of Cardiac Potassium Channels

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 212 Accesses

Abstract

Potassium (K+) channels regulate K+ ion movement across the cell membrane and are important in maintaining the electrical activity in most excitable cells, because they control cellular resting potential and action potential duration. Action potentials recorded from cardiac cells are characterized by their long duration and slow repolarization, quite unlike action potentials found in other electrically excitable cells such as nerve and skeletal muscle. This prolonged depolarization is important in regulating the strength and duration of the contraction of the heart. Outward currents through K+ channels play important roles in influencing the morphology of the action potential in the heart. For example, inward rectifier K+ current (IKir) is important in controlling the resting membrane potential, whereas current through voltage-dependent K+ (Kv) channels plays a major role in controlling the duration of the action potential in cardiac cells. Many K+ channels are the physiological targets of neurotransmitters and hormones, which influence heart rate and contractility through their action on many different types of ion channels, including K+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apkon, M., and Nerbonne, J. M., 1991, Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes, J. Gen. Physiol. 97:973–1011.

    Article  PubMed  CAS  Google Scholar 

  • Attali, B., Lesage, F., Ziliani, P., Guillemare, E., Honore, E., Waldmann, R., Mattei, M. G., Lazdunski, M., and Barhanin, J., 1993, Multiple mRNA isoforms encoding the mouse cardiac Kvl.5 delayed rectifier K+ channel, J. Biol. Chem. 268:24283–24289.

    PubMed  CAS  Google Scholar 

  • Backx, P. H., and Marban, E., 1993, Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes, Circ. Res. 72:890–900.

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G., 1996, K(V)LQT1 AND IsK (MinK) proteins associate to form the I Ks cardiac potassium current, Nature 384:78–80.

    Article  PubMed  CAS  Google Scholar 

  • Benson, D. W., Macrae, C. A., Vesely, M. R., Walsh, E. P., Seidman, J. G., Seidman, C. E., and Satler, C. A., 1996, Missense mutation in the pore region of HERG causes familial long QT syndrome, Circulation 93:1791–1795.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, W. A., and Nerbonne, J. M., 1991, A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes, Am. J. Physiol. 260:H1236–H1247.

    PubMed  CAS  Google Scholar 

  • Carmeliet, E., 1992, Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide, J. Pharmacol. Exp. Ther. 262:809–817.

    PubMed  CAS  Google Scholar 

  • Chouabe, C., Neyroud, N., Guicheney, P., Lazdunski, M., Romey, G., and Barhanin, J., 1997, Properties of KVLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias, EMBO J. 16:5472–5479.

    Article  PubMed  CAS  Google Scholar 

  • Chutkow, W. A., Simon, M. C., Le Beau, M. M., and Burant, C. F., 1996, Cloning, tissue expression and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels, Diabetes 45:1439–1445.

    Article  PubMed  CAS  Google Scholar 

  • Corey, S., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E., 1998, Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IkACh’ J. Biol.- Chem.- 273:5271–5278.

    Article  PubMed  CAS  Google Scholar 

  • Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., and Keating, M. T., 1995, A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome, Cell 80:795–803.

    Article  PubMed  CAS  Google Scholar 

  • Dausse, E., Berthet, M., Denjoy, I., Andre-Fouet, X., Cruaud, C., Bennaceur, M., Faure, S., Coumel, P., Schwartz, K., and Guicheney, P., 1996, A mutation in HERG associated with notched T waves in long QT syndrome, J. Mol. Cell. Cardiol. 28:1609–1615.

    Article  PubMed  CAS  Google Scholar 

  • Davis, N. W., Standen, N. B., and Stanfield, P. R., 1991, ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible functions [Review], J. Bioenerg. Biomembr. 23:509–535.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, J. E., and McKinnon, D., 1994, Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats, Circ. Res. 75:252–260.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, J. E., Shi, W., Wang, H. S., McDonald, C., Yu, H., Wymore, R. S., and Cohen, I. S., and McKinnon, D., 1996, Role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res. 79:659–668 .

    Article  PubMed  CAS  Google Scholar 

  • Dixon, J. E., Shi, W., Wang, H. S., McDonald, C., Yu, H., Wymore, R. S., and Cohen, I. S., and McKinnon, D., 1996, Role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res.80:147 (1997)].

    Google Scholar 

  • Drewe, J. A., Verma, S., Frech, G., and Joho, R. H., 1992, Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies, J. Neurosci. 12:538–548.

    PubMed  CAS  Google Scholar 

  • England, S. K., Uebele, V. N., Shear, H., Kodali, J., Bennett, P. B., and Tamkun, M. M., 1995a, Characterization of a voltage-gated K+ channel β subunit expressed in human heart, Proc. Natl. Acad. Sci. U.S.A. 92:6309–6313.

    Article  PubMed  CAS  Google Scholar 

  • England, S. K., Uebele, V. N., Kodali, J., Bennett, P. B., and Tamkun, M. M., 1995b, A novel K+ channel β-subunit (hKvβl.3) is produced via alternative mRNA splicing, J. Biol. Chem. 270:28531–28534.

    Article  PubMed  CAS  Google Scholar 

  • Fedida, D., and Giles, W. R., 1991, Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle, J. Physiol. (London) 442:191–209.

    CAS  Google Scholar 

  • Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F., Nattel, S., and Brown, A. M., 1993, Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current, Circ. Res. 73:210–216.

    Article  PubMed  CAS  Google Scholar 

  • Ficker, E., Taglialatela, M., Wible, B. A., Henley, C. M., and Brown, A. M., 1994, Spermine and spermidine as gating molecules for inward rectifier K+ channels, Science 266:1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, I., 1994, The ATP sensitive potassium channel of cardiac muscle and action potential shortening during metabolic stress, Cardiovasc. Res. 28:760–761.

    Article  PubMed  CAS  Google Scholar 

  • Fiset, C., Clark, R. B., Larsen, T. S., and Giles, W. R., 1997, A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle, J. Physiol. (London) 504:557–563.

    Article  CAS  Google Scholar 

  • Fozzard, H. A., and Hiraoka, M., 1973, The positive dynamic current and its inactivation properties in cardiac Purkinje fibres, J. Physiol. (London) 234:569–586.

    CAS  Google Scholar 

  • Gasser, R. N. A., and Vaughan-Jones, R. D., 1990, Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian cardiac muscle, J. Physiol. (London) 431:713–741.

    CAS  Google Scholar 

  • Heinemann, S. H., Rettig, J., Wunder, F., and Pongs, O., 1995, Molecular and functional characterization of a rat brain Kvβ3 potassium channel subunit, FEBS Lett. 377:383–389.

    Article  PubMed  CAS  Google Scholar 

  • Ho, K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V., and Hebert, S. C., 1993, Cloning and expression of an inwardly rectifying ATP-regulated potassium channel, Nature 362:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, T., Zagotta, W. N., and Aldrich, R. W., 1990, Biophysical and molecular mechanisms of Shaker potassium channel inactivation [see comments], Science 250:533–538.

    Article  PubMed  CAS  Google Scholar 

  • Hugnot, J. P., Salinas, M., Lesage, F., Guillemare, E., De Weille, J., Heurteaux, C., Mattei, M. G., and Lazdunski, M., 1996, Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels, EMBO J. 15:3322–3331.

    PubMed  CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J. P., Namba, N., Inazawa, J., Gonzalez, G., Aguilar-Bryan, L., Seino, S. and Bryan, J., 1995a, Reconstruction of I KATP—an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, N., Tsuura, Y., Namba, N., Masuda, K., Gonoi, T., Horie, M., Seino, Y., Mizuta, M., and Seino, S., 1995b, Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart, J. Biol. Chem. 270:5691–5694.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J. P., Wang, C. Z., Aguilar-Bryan, L., Bryan, J., and Seino, S., 1996, A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels, Neuron 16:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  • Isacoff, E., Papazian, D., Timpe, L., Jan, Y. N., and Jan, L. Y., 1990, Molecular studies of voltage-gated potassium channels, Cold Spring Harbor Symp. Quantit. Biol. 55:9–17.

    Article  CAS  Google Scholar 

  • Ishii, K., Yamagishi, T., and Taira, N., 1994, Cloning and functional expression of a cardiac inward rectifier K+ channel, FEBS Lett. 338:107–111.

    Article  PubMed  CAS  Google Scholar 

  • Josephson, I. R., Sanchez-Chapula, J., and Brown, A. M., 1984, Early outward current in rat single ventricular cells, Circ. Res. 54:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Kamb, A., Iverson, L. E., and Tanouye, M. A., 1987, Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel, Cell 50:405–413.

    Article  PubMed  CAS  Google Scholar 

  • Kass, R. S., and Davies, M. P., 1996, The roles of ion channels in an inherited heart disease: Molecular genetics of the long QT syndrome, Cardiovasc. Res. 32:443–454.

    PubMed  CAS  Google Scholar 

  • Kass, R. S., and Wiegers, S. E., 1982, The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres, J. Physiol. (London) 322:541–558.

    CAS  Google Scholar 

  • Kenyon, J. L., and Sutko, J. L., 1987, Calcium- and voltage-activated plateau currents of cardiac Purkinje fibers, J. Gen. Physiol. 89:921–958.

    Article  PubMed  CAS  Google Scholar 

  • Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A., 1995, A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem, Nature 376:690–695.

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky, G., Krapivinsky, L., Wickman, K., and Clapham, D. E., 1995, G βγ binds directly to the G protein-gated K+ channel, I KACH, J Biol. Chem. 270:29059–29062.

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky, G., Kennedy, M. E., Nemec, J., Medina, I., Krapivinsky, L., and Clapham, D. E., 1998, Gβ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation, J. Biol. Chem. 273:16946–16952.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y., 1993, Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel [see comments], Nature 364:802–806.

    Article  PubMed  CAS  Google Scholar 

  • Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G., and Barhanin, J., 1996a, TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure, EMBO J. 15:1004– 1011.

    PubMed  CAS  Google Scholar 

  • Lesage, F., Reyes, R., Fink, M., Duprat, F., Guillemare, E., and Lazdunski, M., 1996b, Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge, EMBO J. 15:6400–6407.

    PubMed  CAS  Google Scholar 

  • Li, G. R., Feng, J., Wang, Z., Fermini, B., and Nattel, S., 1996, Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes, Circ. Res. 78:903–915.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., and Clapham, D. E., 1987, The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart, Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Lopatin, A. N., Makhina, E. N., and Nichols, C. G., 1994, Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification, Nature 372:366–369.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, G. A., Jan, Y. N., and Jan, L. Y., 1994, Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore, Nature 367:179–182.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., and Miller, C, 1989, Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor, Science 245:1382–1384.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., and Yellen, G., 1990, Mutations affecting TEA blockade and ion permeation in voltage activated K+ channels, Science 250:276–279.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., Aldrich, R. W., and Lee, A. W., 1993, Functional stoichiometry of Shaker potassium channel inactivation. Science 262:757–759.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C, 1989, Genetic manipulation of ion channels: A new approach to structure and mechanism, Neuron 2:1195–1205.

    Article  PubMed  CAS  Google Scholar 

  • Morales, M. J., Wee, J. O., Wang, S., Strauss, H. C., and Rasmusson, R. L., 1996, The N-terminal domain of a K+ channel β subunit increases the rate of C-type inactivation from the cytoplasmic side of the channel, Proc. Natl. Acad. Sci. U.S.A. 93:15119–15123.

    Article  PubMed  CAS  Google Scholar 

  • Moss, A. J., and Robinson, J. L., 1992, The long-QT syndrome: Genetic considerations, Trends Cardiovasc. Med . 2:81–83.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, C. G., and Lopatin, A. N., 1997, Inward rectifier potassium channels, Annu. Rev. Physiol. 59:171–191.

    Article  PubMed  CAS  Google Scholar 

  • Noble, D., and Tsien, R. W., 1969, Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres, J. Physiol. (London) 200:205–231.

    CAS  Google Scholar 

  • Noma, A., 1983, ATP-regulated K+ channels in cardiac muscle, Nature 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  • Po, S., Roberds, S., Snyders, D. J., Tamkun, M. M., and Bennett, P. B., 1993, Heteromultimeric assembly of human potassium channels: Molecular basis of a transient outward current?, Circ. Res. 72:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  • Pusch, M., 1998, Increase of the single-channel conductance of KVLQT1 potassium channels induced by the association with minK, Pflügers Arch. 437:172–174.

    Article  PubMed  CAS  Google Scholar 

  • Raab-Graham, K. F., Radeke, C. M., and Vandenberg, C. A., 1994, Molecular cloning and expression of a human heart inward rectifier potassium channel, NeuroReport 5:2501–2505.

    Article  PubMed  CAS  Google Scholar 

  • Roberds, S. L., and Tamkun, M. M., 1991, Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart, Proc. Natl. Acad. Sci. U.S.A. 88:1798–1802.

    Article  PubMed  CAS  Google Scholar 

  • Russell, M. W., Dick, M., Collins, F. S., and Brody, L. C, 1996, KVLQT1 mutations in three families with familial or sporadic long QT syndrome, Hum. Mol. Genet. 5:1319–1324.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., and Jurkiewicz, N. K., 1990, Two components of cardiac delayed rectifier K+ current: Differential sensitivity to block by class III antiarrhythmic agents, J. Gen. Physiol. 96:195–215.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T., 1995, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel, Cell 81:299–307.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., and Keating, M. T., 1996a, Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac IKs potassium channels, Nature 384:80–83.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Curran, M. E., Spector, P. S., and Keating, M. T., 1996b, Spectrum of HERG K+ channel dysfunction in an inherited cardiac arrhythmia, Proc. Natl. Acad. Sci. U.S.A. 93:8796–8796.

    Article  CAS  Google Scholar 

  • Sanguinetti, M. C., Johnson, J. H., Hammerland, L. G., Kelbaugh, P. R., Volkmann, R. A., Saccomano, N. A., and Mueller, A. L., 1997, Heteropodatoxins: Peptides isolated from spider venom that block Kv4.2 potassium channels, Mol. Pharmacol. 51:491–498.

    PubMed  CAS  Google Scholar 

  • Satler, C. A., Walsh, E. P., Vesely, M. R., Plummer, M. H., Ginsburg, G. S., and Jacob, H. J., 1996, Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome, Am. J. Med. Genet. 65:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Schonenherr, R., and Heinemann, S. H., 1996, Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel, J. Physiol. (London) 493:5–42.

    Google Scholar 

  • Schulze-Bahr, E., Haverkamp, W., and Funke, H., 1995, The long-QT syndrome [letter; comment], N. Engl. J. Med. 333:1783–1784.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, F. Y., Levesque, P. C., Yang, W. P., Little, W. A., Conder, M. L., Jenkins-West, T., and Blanar, M. A., 1997, Dominant-negative KVLQT1 mutations underlie the LQT1 form of long QT syndrome [see comments], Circulation 96:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  • Slesinger, P. A., Jan, Y. N., and Jan, L. Y., 1993, The S4-S5 loop contributes to the ion-selective pore of potassium channels. Neuron 11:739–749.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. L., Baukrowitz, T., and Yellen, G., 1996, The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836.

    Article  PubMed  CAS  Google Scholar 

  • Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C., and Keating, M. T., 1997, Mutations in the hminK gene cause long QT syndrome and suppress IKs function, Nat. Genet. 17:338–340.

    Article  PubMed  CAS  Google Scholar 

  • Tai, K. K., and Goldstein, S. N., 1998, The conduction pore of a cardiac potassium channel, Nature 391:605–608.

    Article  PubMed  CAS  Google Scholar 

  • Takumi, T., Ohkubo, H., and Nakanishi, S., 1988, Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045.

    Article  PubMed  CAS  Google Scholar 

  • Tamkun, M. M., Knoth, K. M., Walbridge, J. A., Kroemer, H., Roden, D. M., and Glover, D. M., 1991, Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle, FASEB J. 5:331–337.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Nagai, R., Tomoike, H., Takata, S., Yano, K., Yabuta, K., Haneda, N., Nakano, O., Shibata, A., Sawayama, T., Kasai, H., Yazaki, Y., and Nakamura, Y., 1997, Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome. Circulation 95:565–567.

    Article  PubMed  CAS  Google Scholar 

  • Toshe, N., 1990, Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am. J. Physiol. 258:H1200–H1207.

    Google Scholar 

  • Toshe, N., Kameyama, M., and Irasawa, H., 1987, Intracellular Ca and PKC modulate K current in guinea pig heart cells. Am. J. Physiol. 253:H1321–H1324.

    Google Scholar 

  • Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, P. S., and Ashcroft, F. M., 1997, Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor, Nature 387:179–183.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., 1987, Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions, Proc. Natl. Acad. Sci. U.S.A. 84:2560–2564.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, K. B., and Kass, R. S., 1988, Regulation of a heart potassium channel by protein kinase A and C, Science 242:67–69.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, K. B., and Kass, R. S., 1991, Distinct voltage-dependent regulation of a heart-delayed IK by protein kinases A and C, Am. J. Physiol. 261:C1081–C1090.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., Vanraay, T. J., Shen, J., Timothy, K. W., Vincent, G. M., Dejager, T., Schwartz, P. J., Towbin, J. A., Moss, A. J., Atkinson, D. L., Landes, G. M., Connors, T. D., and Keating, M. T., 1996, Positional cloning of a novel potassium channel gene-KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 12:17–23.

    Article  PubMed  Google Scholar 

  • Wang, W., Xia, J., and Kass, R. S., 1998, MinK-KVLQT1 fusion proteins, evidence for multiple stoichiomet- ries of the assembled IsK channel [In Process Citation], J. Biol. Chem. 273:34069–34074.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Fermini, B., and Nattel, S., 1993, Sustained depolarization-induced outward current in human atrial myocytes: Evidence for a novel delayed rectifier K+ current similar to Kvl.5 cloned channel currents, Circ. Res. 73:1061–1076.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Feng, J., Shi, H., Pond, A., Nerbonne, J. M., and Nattel, S., 1999, Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes [see comments], Circ. Res. 84:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Warmke, J. W., and Ganetzky, B., 1994, A family of potassium channel genes related to eag in Drosophila and mammals, Proc. Natl. Acad. Sci. U.S.A. 91:3438–3442.

    Article  PubMed  CAS  Google Scholar 

  • Wible, B. A., De Biasi, M., Majumder, K., Taglialatela, M., and Brown, A. M., 1995, Cloning and functional expression of an inwardly rectifying K+ channel from human atrium, Circ. Res. 76:343–350.

    Article  PubMed  CAS  Google Scholar 

  • Wilde, A. A., and Janse, M. J., 1994, Electrophysiological effects of ATP sensitive potassium channel modulation: Implications for arrhythmogenesis, Cardiovasc. Res. 28:16–24.

    Article  PubMed  CAS  Google Scholar 

  • Wollnik, B., Schroeder, B. C., Kubisch, C., Esperer, H. D., Wieacker, P., and Jentsch, T. J., 1997, Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias, Hum. Mol. Genet. 6:1943–1949.

    Article  PubMed  CAS  Google Scholar 

  • Wymore, R. S., Gintant, G. A., Wymore, R. T., Dixon, J. E., McKinnon, D., and Cohen, I. S., 1997, Tissue and species distribution of mRNA for the IKr-like K+ channel, erg, Circ. Res. 80:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Isomoto, S., Matsumoto, S., Kondo, C., Shindo, T., Horio, Y., and Kurachi, Y., 1997, Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel, J. Physiol. (London) 499:715–720.

    CAS  Google Scholar 

  • Yang, Y., and Sigworth, F. J., 1998, Single-channel properties of I Ks potassium channels, J. Gen. Physiol. 112:665–678.

    Article  PubMed  CAS  Google Scholar 

  • Yeola, S. W., and Snyders, D. J., 1997, Electrophysiological and pharmacological correspondence between Kv4. 2 current and rat cardiac transient outward current, Cardiovasc. Res. 33:540–547.

    Article  PubMed  CAS  Google Scholar 

  • Zagotta, W. N., Hoshi, T., and Aldrich, R. W., 1990, Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB, Science 250:568–571.

    Article  PubMed  CAS  Google Scholar 

  • Zagrovic, B., and Aldrich, R., 1999, For the latest information, tune to channel KcsA [comment], Science 285:59–61.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, A. C., 1994, Intracellular calcium activates a chloride current in canine ventricular myocytes, Am. J. Physiol. 267:H1984–H1995.

    PubMed  CAS  Google Scholar 

  • Zygmunt, A. C., and Gibbons, W. R., 1992, Properties of the calcium-activated chloride current in heart, J. Gen. Physiol. 99:391–414.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, A. C., Goodrow, R. J., and Antzelevitch, C., 1997, Sodium effects on 4-aminopyridine-sensitive transient outward current in canine ventricular cells, Am. J. Physiol. 272:H1–H11

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heath, B.M., Wehrens, X., Kass, R.S. (2001). Overview: Molecular Physiology of Cardiac Potassium Channels. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics