Skip to main content

Pharmacology of High-Conductance, Ca2+-Activated Potassium Channels

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

Potassium channels represent a diverse family of ion channels whose members display the common property of being highly selectivity for potassium as the conducting ion. Support for the idea of the large diversity of potassium channels is gained from sequencing the Caenorhabditis elegans genome. It is predicted that about 100 K+ channel subunits exist in this organism. These K+ channel subunits belong to eight conserved K+ channel families (Wei et al., 1996), and the high-conductance, Ca2+-activated K+ (BKCa) channel is a representative member of one of these families. BKCa channels are widely distributed in both electrically excitable and nonexcitable cells (Latorre et al., 1989; McManus, 1991), are activated by both voltage and intracellular Ca2+, and display a high conductance, as well as a high selectivity for K+. They regulate excitation—contraction coupling processes in vascular, airway, bladder, and other types of smooth muscle and also control transmitter release from neuroendocrine tissue. In nonexcitable cells, BKCa channels regulate fluid secretion and cell volume. In various tissues, BKCa channels are modulated by exogenous ligands signaling through their respective membrane receptors. Regulatory mechanisms such as phosphorylation, interaction with GTP-binding proteins, or direct modulation by intracellular second messengers have been identified and charcterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, J. P., Shen, K.-Z., Kavanaugh, M. P., Warren, R. A., Wu, Y.-N., Lagrutta, A., Bond, C. T., and North, R. A., 1992, Calcium-activated potassium channels expressed from cloned complementary DNAs,Neuron 9:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, C. S., MacKinnon, R., Smith, C., and Miller, C., 1988, Charybdotoxin block of single Ca2+ activated K+ channels. Effects of channel gating, voltage, and ionic strength, J. Gen. Physiol. 91:317–333.

    Article  PubMed  CAS  Google Scholar 

  • Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljansky, Y., Menez, A., and Toma, F., 1991a, Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR: Charybdotoxin possesses a structural motif found in other scorpion toxins, Eur. J. Biochem. 196:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F., 1991b, Refined structure of charybdotoxin : Common motifs in scorpion toxins and insect defensins, Science 254:1521–1523.

    Article  PubMed  CAS  Google Scholar 

  • Bontems, F., Gilquin, B., Roumestand, C., Menez, A., and Toma, F., 1992, Analysis of side chain organization on a refined model of charybdotoxin; structural and functional implications, Biochemistry 31:7756–7764.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A., Tsunoda, S., McCobb, D. P., Wei, A., and Salkoff, L., 1993, mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels, Science 261:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Candia, S., Garcia, M. L., and Latorre, R., 1992, Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel, Biophys. J. 63:583–590.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C.-P., Dworetzky, S. I., Wang, J., and Goldstein, M. E., 1997, Differential expression of the α and β subunits of the large-conductance calcium-activated potassium channel: Implications for channel diversity,Mol. Brain Res. 45:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Cui, J., Cox, D. H., and Aldrich, R. W., 1997, Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels, J. Gen. Physiol. 5:647–673.

    Article  Google Scholar 

  • DeFarias, F. P., Carvalho, M. F., Lee, S. H., Kaczorowski, G. J., and Suarez-Kurtz, G., 1996, Effects of the K+ channel blockers paspalitrem C and paxilline on mammalian smooth muscle, Eur. J. Pharmacol 314:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Diaz, L., Meera, P., Amigo, J., Stefani, E., Alvarez, O., Toro, L., and Latorre, R., 1998, Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel, J. Biol. Chem. 273:32430–32436.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J. P., Li, Z. W., and Lingle, C. J., 1998, Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits,Biophys. J. 74:268–289.

    Article  PubMed  CAS  Google Scholar 

  • Dworetzky, S. I., Trojnacki, J. T., and Gribkoff, V. K., 1994, Cloning and expression of a human large-conductance calcium-activated potassium channel, Mol. Brain Res. 27:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Dworetzky, S. I., Boissard, C. G., Lum-Ragan, J. T., McKay, M. C., Post-Munson, D. J., Trojnacki, J. T., Chang, C.-P., and Gribkoff, V. K., 1996, Phenotypic alteration of a human BK (hSlo) channel by hSloβ subunit coexpression: Changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation, J. Neurosci. 16 4543–4550.

    PubMed  CAS  Google Scholar 

  • Garcia, M. L., Hanner, M., Knaus, H.-G., Koch, R., Schmalhofer, W., Slaughter, R. S., and Kaczorowski, G. J., 1997, Pharmacology of potassium channels, Adv. Pharmacol. 39:425–471.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Calvo, M., Knaus, H.-G., McManus, O. B., Giangiacomo, K. M., Kaczorowski, G. J., and Garcia, M. L., 1994, Purification and reconstitution of the high-conductance calcium-activated potassium channel from tracheal smooth muscle, J. Biol. Chem. 269:676–682.

    PubMed  CAS  Google Scholar 

  • Giangiacomo, K. M., Garcia, M. L., and McManus, O. B., 1992, Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle, Biochemistry 31:6719–6727.

    Article  PubMed  CAS  Google Scholar 

  • Giangiacomo, K. M., Garcia-Calvo, M., Knaus, H.-G., Mullmann, T. J., Garcia, M. L., and McManus, O., 1995, Functional reconstitution of the large-conductance, calcium-activated potassium channel purified from bovine aortic smooth muscle,Biochemistry 34:15849–15862.

    Article  PubMed  CAS  Google Scholar 

  • Giangiacomo, K. M., Kamassah, A., Harris, G., and McManus, O. B., 1998, Mechanism of maxi-K channel activation by dehydrosoyasaponin-I, J. Gen. Physiol. 112:485–501.

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff, V. K., Lum-Ragan, J. T., Boissard, C. G., Post-Munson, D. J., Meanwell, N. A., Starrett, J. E., Kozlowski, E. S., Romine, J. L., Trojnacki, J. T., McKay, M. C., Zhong, J., and Dworetzky, S. I., 1996, Effects of channel modulators on cloned large-conductance calcium-activated potassium channels, Mol. Pharmacol. 50:206–217.

    PubMed  CAS  Google Scholar 

  • Hanner, M., Schmalhofer, W. A., Munujos, P., Knaus, H.-G., Kaczorowski, G. J., and Garcia, M. L., 1997, The β subunit of the high conductance calcium-activated potassium channel contributes to the high affinity receptor for charybdotoxin, Proc. Natl. Acad. Sci. U.S.A. 94:2853–2858.

    Article  PubMed  CAS  Google Scholar 

  • Hanner, M., Vianna-Jorge, R., Kamassah, A., Schmalhofer, W. A., Knaus, H.-G., Kaczorowski, G. J., and Garcia, M. L., 1998, The β subunit of the high conductance calcium-activated potassium channel; identification of residues involved in charybdotoxin binding, J. Biol. Chem. 273:16289–16296.

    Article  PubMed  CAS  Google Scholar 

  • Hewawasam, P., Meanwell, N. A., Gribkoff, V. K., Dworetzky, S. I., and Boissard, C. G., 1997, Discovery of a novel class of BK channel openers: Enantiospecific synthesis and BK channel opening activity of 3-(5-chloro-2-hydroxyphenyl)-l,3-dihydro-3-hydroxy-6-(trifluoromethyl)-2H-indol-2-one,Bioorga. Medicinal Chem. Lett. 7:1255–1260.

    Article  CAS  Google Scholar 

  • Hu, S., Fink, C. A., Kim, H. S., and Lappe, R. W., 1997, Novel and potent BK channel openers: CGS 7181 and its analogs. Drug Dev. Res. 41:10–21.

    Article  CAS  Google Scholar 

  • Huang, J.-C., Garcia, M. L., Reuben, J. P., and Kaczorowski, G. J., 1993, Inhibition of β-adrenoceptor agonist relaxation of airway smooth muscle by Ca2+activated K+ channel blockers, Eur. J. Pharmacol. 235:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., and Sugg, E. E., 1992, Determination of the three-dimensional structure of iberiotoxin in solution by 1H nuclear magnetic resonance spectroscopy. Biochemistry 31:8151–8159.

    Article  PubMed  CAS  Google Scholar 

  • Joiner, W. J., Tang, M. D., Wang, L.-Y., Dworetzky, S. I., Boissard, C. G., Gan, L., Gribkoff, V. K., and Kaczmarek, L. K., 1998, Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits, Nat. Neurosci. 1:462–469.

    Article  PubMed  CAS  Google Scholar 

  • Jones, T. R., Charette, L., Garcia, M. L., and Kaczorowski, G. J., 1990, Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a potent Ca2+activated K+ channel inhibitor,J. Pharmacol. Exp. Ther. 255:697–705.

    PubMed  CAS  Google Scholar 

  • Jones, T. R., Charette, M. L., Garcia, M. L., and Kaczorowski, G. J., 1993, Interaction of iberiotoxin with beta adrenoceptor agonists and sodium nitroprusside on guinea pig trachea, J. Appli. Physiol. 74:1879–1884.

    Article  CAS  Google Scholar 

  • Kaczorowski, G. J., Knaus, H.-G., Leonard, R. J., McManus, O. B., and Garcia, M. L., 1996, High conductance calcium-activated potassium channels; structure, pharmacology and function, J. Biomembr. Bioenerg. 28:255–267.

    Article  CAS  Google Scholar 

  • Knaus, H.-G., Eberhart, A., Kaczorowski, G. J., and Garcia, M. L., 1994a, Covalent attachment of charybdotoxin to the β-subunit of the high-conductance Ca2+-activated K+ channel,J. Biol. Chem. 269:23336–23341.

    PubMed  CAS  Google Scholar 

  • Knaus, H.-G., Folander, K., Garcia-Calvo, M., Garcia, M. L., Kaczorowski, G. J., Smith, M., and Swanson, R., 1994b, Primary sequence and immunological characterization of the b-subunit of the high-conductance Ca2+-activated K+ channel from smooth muscle, J. Biol. Chem. 269:17274–17278.

    PubMed  CAS  Google Scholar 

  • Knaus, H.-G., Garcia-Calvo, M., Kaczorowski, G. J., and Garcia, M. L., 1994c, Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels, J. Biol. Chem. 269:3921–3924.

    PubMed  CAS  Google Scholar 

  • Knaus, H.-G., McManus, O. B., Lee, S. H., Schmalhofer, W. A., Garcia-Calvo, M., Helms, L. M. H., Sanchez, M., Giangiacomo, K., Reuben, J. P., Smith A. B., III Kaczorowski, G. J., and Garcia, M. L., 1994d, Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance Ca2+-activated K+ channels, Biochemistry 33:5819–5828.

    Article  PubMed  CAS  Google Scholar 

  • Knaus, H.-G., Schwarzer, C., Koch, R. O. A., Eberhart, A., Kaczorowski, G. J., Glossmann, H., Wunder, F., Pongs, O., Garcia, M. L., and Sperk, G., 1996, Distribution of high-conductance Ca2+-activated K + channels in rat brain: Targeting to axons and nerve terminals, J. Neurosci. 16:955–963.

    PubMed  CAS  Google Scholar 

  • Koch, R. O. A., Koschak, A., Wanner, S. G., Kaczorowski, G. J., Wittka, R., Garcia, M. L., and Knaus, H.-G., 1996, High-conductance calcium-activated potassium channels in rat brain: Pharmacological profile, quantification of expression, subunit composition and functional implications, Soc. Neurosci. Abstr. 22:1754.

    Google Scholar 

  • Koschak, A., Koch, R. O., Liu, J., Kaczorowski, G. J., Reinhart, P. H., Garcia, M. L., and Knaus, H.-G., 1997, [125I]Iberiotoxin-D19Y/Y36F, the first selective, high specific activity radioligand for high-conductance calcium-activated potassium channels. Biochemistry 36:1943–1952.

    Article  PubMed  CAS  Google Scholar 

  • Kume, H., Tokuno, H., and Tomita, T., 1989, Regulation of Ca2+dependent K+-channels in trachael myocytes by phosphorylation, Nature 341:152–154.

    Article  PubMed  CAS  Google Scholar 

  • Kume, H., Graziano, M. P., and Kotlikoff, M. I., 1992, Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins,Proc. Natl. Acad. Sci. U.S.A. 89:11051–11055.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, R., Oberhauser, A., Labarca, P., and Alvarez, O., 1989, Varieties of calcium-activated potassium channels, Annu. Rev. Physiol. 51:385–399.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Starrett, J. E., Meanwell, N. A., Johnson, G., Harte, W. E., Dworetzky, S. I., Boissard, C. G., and Gribkoff, V. K., 1997, The discovery of novel openers of Ca2+dependent large-conductance potassium channels: Pharmacophore search and physiological evaluation of flavonoids,Bioorg, Medicinal Chem. Lett. 7:759–762.

    Article  CAS  Google Scholar 

  • MacKinnon, R., and Miller, C., 1988, Mechanism of charybdotoxin block of the high-conductance, Ca2+activated K+ channel, J. Gen. Physiol. 91:335–349.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., Latorre, R., and Miller, C., 1989, Role of surface electrostatics in the operation of a high-conductance Ca2+activated K+ channel, Biochemistry, 28:8092–8099.

    Article  PubMed  CAS  Google Scholar 

  • McCobb, D. P., Fowler, N. L., Featherstone, T., Lingle, C. J., Saito, M., Krause, J. E., and Salkoff, L., 1995, A human calcium-activated potassium channel gene expressed in vascular smooth muscle, Am. J. Physiol. 269:H767–H777.

    Google Scholar 

  • McManus, O. B., 1991, Calcium-activated potassium channels: regulation by calcium, J. Bioenerg. Biomembr. 23:537–560.

    Article  PubMed  CAS  Google Scholar 

  • McManus, O. B., Harris, G. H., Giangiacomo, K. M., Feigenbaum, P., Reuben, J. P., Addy, M. E., Burka, J. F., Kaczorowski, G. J., and Garcia, M. L., 1993, An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 32:6128–6133.

    Article  PubMed  CAS  Google Scholar 

  • McManus, O. B., Helms, L. M. H., Pallanck, L., Ganetzky, B., Swanson, R., and Leonard, R. J., 1995, Functional role of the β subunit of high-conductance calcium-activated potassium channels. Neuron 14:1–20.

    Article  Google Scholar 

  • Meera, P., Wallner, M., Jiang, Z., and Toro, L., 1996, A calcium switch for the functional coupling between α (hslo) and β subunits (Kv#caβ) of maxi K channels, FEBS Lett. 382:84–88.

    Article  PubMed  CAS  Google Scholar 

  • Meera, P., Wallner, M., Song, M., and Toro, L., 1997, Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus,Proc. Natl. Acad. Sci. U.S.A. 94:14066–14071.

    Article  PubMed  CAS  Google Scholar 

  • Meera, P., Wallner, M., and Toro, L., 1999, Molecular determinant of maxi-K channel inactivation, Biophys. J. 76:A267.

    Google Scholar 

  • Miura, M., Belvesi, M. G., Stretton, C. D., Yacoub, M. H., and Barnes, P. J., 1992, Role of potassium channels in bronchodilator responses in human airways, Am. Rev. Respir. Dis. 146:132–136.

    PubMed  CAS  Google Scholar 

  • Mullmann, T. J., Munujos, P., Garcia, M. L., and Giangiacomo, K. M., 1999, Electrostatic mutations in iberiotoxin as a unique tool for probing the electrostatic structure of the maxi-K channel outer vestibule, Biochemistry, 38:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Munujos, P., Knaus, H.-G., Kaczorowski, G. J., and Garcia, M. L., 1995, Crosslinking of charybdotoxin to high-conductance calcium-activated potassium channels: Identification of the covalently modified toxin residue, Biochemistry 34:10771–10776.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S.-P., 1994, Activators of large-conductance Ca2+-dependent K+ channels, Exp. Opin. Invest. Drugs 3:1181–1188.

    CAS  Google Scholar 

  • Olesen, S.-P., Munch, E., Moldt, P., and Drejer, J., 1994, Selective activation of Ca2+dependent K+ channels by novel benzimidazolone, Eur. J. Pharmacol. 251:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Pallanck, L., and Ganetzky, B., 1994, Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke, Hum. Mol. Genet. 3:1239–1243.

    Article  CAS  Google Scholar 

  • Park, C.-S., and Miller, C, 1992a, Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel, Neuron 9:307–313.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.-S., and Miller, C, 1992b, Mapping function to structure in a channel-blocking peptide: Electrostatic mutants of charybdotoxin, Biochemistry 31:7749–7755.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, M., and Salkoff, L., 1997, A novel calcium-sensing domain in the BK channel, Biophys. J. 73:1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Shimony, E., Sun, T., Kolmakova-Partensky, L., and Miller, C, 1994, Engineering a uniquely reactive thiol into a cysteine-rich peptide,Protein Eng. 7:503–507.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S. B., Goetz, M. A., Zink, D. L., Dombrowski, A. W., Polishook, J. D., Garcia, M. L., Schmalhofer, W., McManus, O. B., and Kaczorowski, G. J., 1994, Maxikdiol: A novel dihydroxyisoprimane as an agonist of maxi-K channels, J. Chem. Soc., Perkin Trans. 1 1994:3349–3352.

    Article  Google Scholar 

  • Solaro, C. R., and Lingle, C. J., 1992, Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel,Science 257:1694–1698.

    Article  PubMed  CAS  Google Scholar 

  • Stampe, P., Kolmakova-Partensky, L., and Miller, C, 1994, Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin, Biochemistry 33:443–450.

    Article  PubMed  CAS  Google Scholar 

  • Strobaek, D., Christophersen, P., Holm, N. R., Moldt, P., Ahring, P. K., Johansen, T. E., and Olesen, S.-P., 1996, Modulation of the Ca2+-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+, Neuropharmacology 35: 903–914.

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Kurtz, G., Garcia, M. L., and Kaczorowski, G. J., 1991, Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues, J. Pharmacol. Exp. Ther. 259:439–443.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Meera, P., Song, M., Knaus, H.-G., and Toro, L., 1997, Molecular constituents of maxi KCa channels in human coronary smooth muscle: Predominant α+ β subunit complexes, J. Physiol. (London) 502:545–557.

    Article  CAS  Google Scholar 

  • Tseng-Crank, J., Foster, C. D., Krause, J. D., Mertz, R., Godinot, N., DiChiara, T. J., and Reinhart, P. H., 1994,Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain, Neuron 13:1315–1330.

    Article  PubMed  CAS  Google Scholar 

  • Tseng-Crank, J., Godinot, N., Johansen, T. E., Ahring, P. K., Strobaek, D., Mertz, R., Foster, C. D., Olesen,S.-P., and Reinhart, P. H., 1996, Cloning, expression, and distribution of a Ca2+-activated K+ channel β-subunit from human brain, Proc. Natl. Acad. Sci. U.S.A. 93:9200–9205.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, J., Feigenbaum, P., Katz, G., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S.,Kaczorowski, G. J., and Garcia, M. L., 1989, Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle: Evidence for a direct association with the high conductance calcium-activated potassium channel, J. Biol. Chem. 264:20902–20909.

    PubMed  CAS  Google Scholar 

  • Vogalis, F., Vincent, T., Qureshi, I., Schmalz, F., Ward, M. W., Sanders, K. M., and Horowitz, B., 1996,Cloning and expression of the large-conductance Ca2+activated K+ channel from colonic smooth muscle, Am. J. Physiol. 271:G629–G639.

    Google Scholar 

  • Wallner, M., Meera, P., Ottolia, M., Kaczorowski, G. J., Latorre, R., Garcia, M. L., Stefani, E., and Toro, L., 1995,Characterization of and modulation by a β-subunit of a human maxi KCa channel cloned from myometrium, Recept. Channels 3:185–199.

    PubMed  CAS  Google Scholar 

  • Wallner, M., Meera, P., and Toro, L., 1996, Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus,Proc. Natl. Acad. Sci. U.S.A. 93:14922–14927.

    Article  PubMed  CAS  Google Scholar 

  • Wallner, M., Meera, P., and Toro, L., 1999, A novel β subunit leads to inactivating maxiK currents, Biophys. J. 76:A267.

    Google Scholar 

  • Wei, A., Jegla, T., and Salkoff, L., 1996, Eight potassium channel families revealed by the C. elegans genome project, Neuropharmacology 35:805–829.

    Article  PubMed  CAS  Google Scholar 

  • Winquist, R. J., Heany, L. A., Wallace, A. A., Baskin, E. P., Stein, R. B., Garcia, M. L., and Kaczorowski, G., 1989, Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle,J. Pharmacol. Exp. Ther. 248:149–156.

    PubMed  CAS  Google Scholar 

  • Yao, Y., Peter, A. B., Baur, R., and Sigel, E., 1989, The tremorigen aflatrem is a positive allosteric modulator of the Îł-amonibutyric acidA receptor channel expressed in Xenopus oocytes,Mol. Pharmacol. 35:319–323.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia, M.L., Kaczorowski, G.J. (2001). Pharmacology of High-Conductance, Ca2+-Activated Potassium Channels. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics