Skip to main content

Equation of State Measurements at Extreme Pressures Using Laser-Driven Shocks

  • Chapter
High-Field Science

Abstract

Laser-driven shock waves have long been a laboratory option for exploring material properties at extreme pressures, but the use of lasers for this purpose has been limited. Direct irradiation of a solid by even a tabletop laser focused to a small spot can produce a multi-Mbar shock. Although this has been known for several decades, during that time most laser-driven shock experiments have been demonstrations of high velocity shock waves, not the use of the shocks for measurements of, say, of the equation of state (EOS) of the shocked matter [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. G. M. van Kessel and R. Sigel, Phys. Rev. Lett. 33, 1020 (1974);

    Article  ADS  Google Scholar 

  2. L. R. Veeser and S. C. Solem, Phys. Rev. Lett. 40, 1391 (1978);

    Article  ADS  Google Scholar 

  3. R. J. Trainor, J. W. Shaner, J. M. Auerbach, and N. C. Holmes, Phys. Rev. Lett. 42, 1154 (1979).

    Article  ADS  Google Scholar 

  4. E. M. Campbell, Laser Part. Beams 9, 209 (1991).

    Article  ADS  Google Scholar 

  5. S. Fu, Y. Gu, J. Wu, and S. Wang, Phys. Plasmas 2, 3461 (1995).

    Article  ADS  Google Scholar 

  6. M. Koenig et al., Phys. Rev. Lett., 74,2260 (1995).

    Article  ADS  Google Scholar 

  7. A. M. Evans et al., Lasers Part. Beams 14, 113 (1996).

    Article  ADS  Google Scholar 

  8. A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996).

    Article  ADS  Google Scholar 

  9. R. Cauble et al., Phys. Rev. Lett. 70, 2102 (1993).

    Article  ADS  Google Scholar 

  10. R. Cauble et al., Phys. Rev. Lett. 74, 3816 (1995).

    Article  ADS  Google Scholar 

  11. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966).

    Google Scholar 

  12. C. E. Ragan III, Phys. Rev. A 25, 3360 (1982)

    Article  ADS  Google Scholar 

  13. W. J. Nellis et al., Phys. Rev. Lett. 60, 1414 (1988).

    Article  ADS  Google Scholar 

  14. R. Cauble et al. Phys. Rev. Lett. 80, 1248 (1998).

    Article  ADS  Google Scholar 

  15. R. Smoluchowski, Nature 215, 691 (1967)

    Article  ADS  Google Scholar 

  16. W. B. Hubbard, Science 214, 145 (1981)

    Article  ADS  Google Scholar 

  17. G. Chabrier, D. Saumon, W. B. Hubbard, J. I. Lunine, Astrophys. J. 391, 817 (1992)

    Article  ADS  Google Scholar 

  18. W. J. Nellis, M. Ross, N. C. Holmes, Science 269, 1249 (1995).

    Article  ADS  Google Scholar 

  19. G. Chabrier and 1. Baratffe, Astron. Astrophys. 327, 1039 (1997).

    ADS  Google Scholar 

  20. S. W. Haan et al., Phys. Plasmas 2, 2480 (1995)

    Article  ADS  Google Scholar 

  21. J. D. Lindl, Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  22. S. Nakai and H. Takabe, Rep. Prog. Phys. 59, 1071 (1996).

    Article  ADS  Google Scholar 

  23. G. I. Kerley, “A Theoretical Equation of State for Deuterium,” Los Alamos Laboratory Report LA-4776 (1972)

    Google Scholar 

  24. G. Kerley, J. Chem. Phys. 73, 460 (1980).

    ADS  Google Scholar 

  25. M. Ross, F. H. Ree, D. A. Young, J. Chem. Phys. 79, 1487 (1983).

    Article  ADS  Google Scholar 

  26. D. Saumon and G. Chabrier, Phys. Rev A 44, 5122 (1991)

    Article  ADS  Google Scholar 

  27. D. Saumon and G. Chabrier, Phys. Rev A 46, 2084 (1992)

    Article  ADS  Google Scholar 

  28. D. Saumon and G. Chabrier Phys. Rev. Lett. 62, 2397(1989).

    Article  ADS  Google Scholar 

  29. H. Reinholz, R. Redmer, S. Nagel, Phys. Rev. E 52, 5368 (1995).

    Article  ADS  Google Scholar 

  30. W. R. Magro, D. M. Ceperley, C. Pierleoni, B. Bemu, Phys. Rev. Lett. 76, 1240 (1996).

    Article  ADS  Google Scholar 

  31. F. J. Rogers, Astrophys. J. 310, 723 (1986)

    Article  ADS  Google Scholar 

  32. F. J. Rogers, F. J. Swenson, C. A. Iglesias, Astrophys. J. 456, 902 (1996).

    Article  ADS  Google Scholar 

  33. T. .J. Lenosky, J. D. Kress, L. A. Collins, Phys. Rev. B 56, 5164 (1997).

    ADS  Google Scholar 

  34. M Ross, 58, 669 Phys. Rev. B (1998).

    Article  ADS  Google Scholar 

  35. L. B. Da Silva et al. Phys. Rev. Lett. 78,483 (1997)

    Article  ADS  Google Scholar 

  36. R. Cauble et al. Phys. Plasmas 4, 1857 (1997)

    Article  ADS  Google Scholar 

  37. G. W. Collins et al., Phys. Plasmas 5, 1864 (1998).

    Article  ADS  Google Scholar 

  38. G. W. Collins et al.. Science 281 (1998) 1178.

    Article  ADS  Google Scholar 

  39. W. J. Nellis, A. C. Mitchell, M. van Thiel, G. J. Devine, R. J. Trainor, and N. Brown, J Chem. Phys. 79, 1480 (1983)

    Article  ADS  Google Scholar 

  40. N. C. Holmes, M. Ross, and W. J. Nellis, Phys. Rev. B 52, 15835 (1995).

    Article  ADS  Google Scholar 

  41. L. M. Barker and R. E. Hollenbach, J Appl. Phys. 43, 4669 (1972)

    Article  ADS  Google Scholar 

  42. P. M. Celliers et al. Appl. Phys. Lett. 73, 1320(1998).

    Article  ADS  Google Scholar 

  43. P. M. Celliers et al., submitted to Phys. Rev. Lett. (1998).

    Google Scholar 

  44. G. W. Collins et al., submitted to Phys. Rev. Lett. (1998).

    Google Scholar 

  45. D. Saumon, G. Chabrier, and H. M. Van Horn, Astrophys. J. Supp. 99, 713 (1995).

    Article  ADS  Google Scholar 

  46. W. B. Hubbard et al., Phys. Plasmas 4, 2011 (1997).

    Article  ADS  Google Scholar 

  47. 31. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cauble, R., Da Silva, L.B., Celliers, P.M., Collins, G.W., Gold, D.M. (2000). Equation of State Measurements at Extreme Pressures Using Laser-Driven Shocks. In: Tajima, T., Mima, K., Baldis, H. (eds) High-Field Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1299-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1299-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5485-7

  • Online ISBN: 978-1-4615-1299-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics