Skip to main content

Genomic and cDNA Sequence of Prophenoloxidases From Drosophila Melanogaster

  • Chapter
Phylogenetic Perspectives on the Vertebrate Immune System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 484))

Abstract

Phenoloxidase (PO) is an important enzyme associated with the biochemistry of three physiologically important processes in insects. The first process, viz., cuticular sclerotization, ensures the protection of the soft bodied insects from their predators and preys as well as from desiccation by hardening the cuticle (Andersen et al.,1996; Sugumaran 1991; 1998). During sclerotization, PO generated quinones serve both as sclerotizing agents and as substrates for quinone isomerases that produce quinone methides (Sugumaran, 1998; Saul & Sugumaran 1988, 1989 a,b,1990, Ricketts & Sugumaran 1994). The reactions of quinones and quinone methides with cuticular structural components viz., chitin and proteins, lead to the hardening of cuticle (Andersen et al., 1996; Sugumaran 1991, 1998). In the second process, organisms establishing successful entry into the insect hemocel face among other host defense reactions, the dreaded action of PO, which causes deposition of melanin pigment around the intruder (Ashida & Brey 1995; Gillespie et al., 1997>; Nappi & Sugumaran 1993; Soderhall, et al., 1990; Sugumaran, 1996; Sugumaran & Kanost, 1993). While the intruder may still live in side the melanotic encapsule, its ability to multiply and damage the host is dramatically hindered by the melanotic capsule. Finally during wounding, loss of insect hemolymph is arrested by the rapid deposition melanin at the wounding site (Lai-Fook, 1966; Sugumaran, 1996). Apart from sealing the wound, PO action may also provide cytotoxic quinones that could harm the opportunistically invading microorganism (Nappi & Sugumaran 1993; >Sugumaran 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen SO, Peter MG, Roepstorff P. Cuticular sclerotization in insects. Comp Biochem. Physiol. 1996; 113B: 689–705.

    CAS  Google Scholar 

  • Andersson K, Sun SC, Boman HG, Steiner H. Purification of the prophenoloxidase from Hyalophora cecropia and four proteins involved in its activation. Insect Biochem. 1989; 19: 629–637.

    Article  CAS  Google Scholar 

  • Ashida M. Purification and characterization of prephenoloxidase from hemolymph of the silkworm, Bombyx mori. Arch. Biochem. Biophys. 1971; 144: 749–762.

    Article  PubMed  CAS  Google Scholar 

  • Ashida M, Brey P. Role of the integument in insect defense: Prophenoloxidase cascade in the cuticular matrix. Proc. Natl. Acad. Sci. USA. 1995; 92: 10698–10702.

    Article  PubMed  CAS  Google Scholar 

  • Ashida M, Yamazaki HI. “Biochemistry of the phenoloxidase system in insects: With special reference to its activation”. In Molting and metamorphosis, Ohnishi E, Ishizaki H. eds. Tokyo. Jpn. Sci. Soc. Press. 1990. pp. 239–265.

    Google Scholar 

  • Aso Y, Kramer ICJ, Hopkins TL, Lookhart GL. Characterization of hemolymph protyrosinase and a cuticular activator from Manduca sexta (L). Insect Biochem. 1985; 15: 9–17.

    Article  CAS  Google Scholar 

  • Burge CB. “Modeling dependencies in pre-mRNA splicing signals”. In Computational Methods in Molecular Biology, Salzberg, S., Semis, D. and Kasif, S. eds. Amsterdam, Elsevier Science, 1998. pp. 127–163.

    Google Scholar 

  • Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997; 268: 78–94.

    Article  PubMed  CAS  Google Scholar 

  • Chase MR, Raina K, Bruno J, Sugumaran M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. (in press, 2000)

    Google Scholar 

  • Cherqui A, Duvic B, Brehelin M. Purification and characterization of prophenoloxidase from the hemolymph of Locusta migratoria. Arch. Insect Biochem. Physiol. 1996; 32: 225–235.

    Article  CAS  Google Scholar 

  • Cho WL, Liu HS, Lee CH, Kuo CC, Chang TY, Liu CT, Chen CC. Molecular cloning, characterization and tissue expression of prophenoloxidase eDNA from the mosquito Armigeres subalbatus inoculated with Dirofilaria immitis microfilariae. Insect Mol. Biol. 1998; 7: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Durrant HJ, Ratcliffe NA, Hipkin CR, Aspan A, Soderhall K. Purification of the prophenoloxidase enzyme from hemocytes of the cockroach Blaberus discoidalis. Biochem. J. 1993; 289: 87–91.

    PubMed  CAS  Google Scholar 

  • Fujimoto K, Masuda K, Asada N, Ohnishi E. Purification and characterization of prophenoloxidase from the pupae of Drosophila melanogaster. J. Biochem (Tokyo). 1993; 113: 285–291.

    CAS  Google Scholar 

  • Fujimoto K, Okino N, Kawabata SI, Iwanaga S, Ohnishi E. Nucleotide sequence of the eDNA encoding the proenzyme of phenoloxidase A of Drosophila melanogaster. Proc. Natl. Acad. Sci USA. 1995; 92: 7769–7773.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Ann. Rev. Entomol. 1997; 42: 611–643.

    Article  CAS  Google Scholar 

  • Hall M, Scott M, Sugumaran M, Soderhall K, Law JH. Proenzyme of Manduca sexta phenoloxidase: Purification, activation, substrate specificity of the active enzyme and molecular cloning. Proc. Natl. Acad. Sci USA. 1995; 92: 7764–7768.

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Miyoshi T, Funatsu M. Comparative studies on larval and pupal phenoloxidases of the housefly, Musca domestica. Comp. Biochem. Physiol. 1993; 106B: 287–292.

    CAS  Google Scholar 

  • Heyneman RA. Final purification of a latent phenoloxidase with mono-and diphenoloxidase from Tenebrio molitor. Biochem. Biophys. Res. Commun. 1965; 21: 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Wang Y, Ma C, Kanost MR. Subunit composition of prophenoloxidase from Manduca sexta: Molecular cloning of subunit ProPo-P1. Insect Biochem. Mol. Biol. 1997a; 27, 835–850.

    Article  CAS  Google Scholar 

  • Jiang H, Wang Y, Korochkina SE, Benes H, Kanost MR. Molecular cloning of cDNAs for two prophenoloxidases subunits from the Malaria vector, Anopheles Gambiae. Insect Biochem. Mol. Biol. 1997b; 27: 693–699.

    Article  CAS  Google Scholar 

  • Kawabata T, Yasuhara Y, Ochiai M, Matsuura S, Ashida M. Molecular cloning of insect prophenoloxidase: A copper containing protein homologous to arthropod hemocyanin. Proc. Natl. Acad. Sci. USA. 1995; 92: 7774–7778.

    Article  PubMed  CAS  Google Scholar 

  • Kwon TH, Lee SY, Lee JH, Choi JS, Kawabata SI, Iwanaga S, Lee BL. Purification and characterization of prophenoloxidase from the hemolymph of coleopteran insect, Holotrichia diomphlia. Molecules & Cells 1997; 7: 90–97.

    CAS  Google Scholar 

  • Lai-Fook J. The repair of wounds in the integument of insects. J. Insect Physiol. 1966; 12:195–226.

    Article  Google Scholar 

  • Lee WJ, Ahmed A, Torre AD, Kobayashi A, Ashida M, Brey PT. Molecular cloning and chromosomal localization of a prophenoloxidase eDNA from the malaria vector Anapheles gambiae. Insect Mol. Biol. 1998; 7:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Lewis HW, Lewis HS. Genetic regulation of dopa oxidase activity in Drosophila. Ann. N.Y. Acad. Sci. 1963; 100: 827–839.

    CAS  Google Scholar 

  • Maddison WP, Maddison DR. MACLADE, Version 3.04. Sunderland Mass, USA. SinauerAssociates, Inc. Publishers. 1993.

    Google Scholar 

  • Muller HM, Dimopoulos G, Blass C, Kafatos FC. A hemocyte-like cell line established from malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J. Biol. Chem. 1999; 274: 11727–11735.

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Sugumaran M. “Some biochemical aspects of eumelanin formation in insect immunity”. In: Insect Immunity. Pathak J. P. N. cd. New Delhi, India. Oxford & IBH Publishing Co. 1993. pp. 131–148.

    Google Scholar 

  • Pau RN, Eagles PAM. The isolation of o-diphenoloxidase from the third instar larvae of blowfly, Calliphora erythocephala. Biochem. J. 1975; 149: 707–712.

    PubMed  CAS  Google Scholar 

  • Park DS, Shin W, Kim MG, Park SS, Lee WJ, Brey PT, Park HY. Isolation and characterization of the eDNA encoding the prophenoloxidase of Fall webworm, Hyphantria cunea. Insect Biochem. Mol. Biol. 1997; 27: 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Pentz ES, Wright TR. Dmsophila melanogaster diphenoloxidase A2: Gene structure and homology with the mouse mast-cell turn-transplantation antigen, P91A. Gene 1991; 22: 239–242.

    Article  Google Scholar 

  • Perotti ME, Bairati A. Ultrastructure of the melanotic masses in two tumorous strains of Drosophila melanogaster (tuB3 and Freckled). J. Invert. Pathol. 1968; 10: 122–138.

    Article  CAS  Google Scholar 

  • Ricketts D, Sugumaran M. 1,2-dehydro-N-b-alanyldopamine as a new intermediate in insect cuticular sclerotization. J. Biol. Chem. 1994; 269: 22217–22221.

    PubMed  CAS  Google Scholar 

  • Saul SJ, Sugumaran M. A novel quinone: quinone methide isomerase generates quinone methides in insect cuticle. F. E. B. S. Lett. 1988; 237: 155–158.

    Article  CAS  Google Scholar 

  • Saul SJ, Sugumaran M. Characterization of a new enzyme system that desaturates the side chain of Nacetyldopamine. F.E.B.S. Lett. 1989a; 251: 69–73.

    Article  CAS  Google Scholar 

  • Saul SJ, Sugumaran M. N-Acetyldopamine quinone methide/1,2-dehydro-N-acetyldopamine tautomerase - A new enzyme involved in sclerotization of insect cuticle. F.E.B.S. Lett. 1989b; 255: 340–344.

    Article  CAS  Google Scholar 

  • Saul SJ, Sugumaran M. 4-alkyl-o-quinone/2-hydroxy-p-quinone methide isomerase from the larvae hemolymph of Sarcophaga bullata. I. Purification and characterization of enzyme catalyzed reaction. J. Biol. Chem. 1990; 265: 16992–16999.

    PubMed  CAS  Google Scholar 

  • Seybold WD, Meltzer PS, Mitchell HK. Phenoloxidase activation in Drosophila: A cascade of reactions. Biochem. Genetics. 1975; 13: 85–108.

    CAS  Google Scholar 

  • Söderhäll K, Aspán A, Duvic B. The ProPO system and associated proteins. Role in cellular communication in arthropods. Res. Immunol. 1990; 141: 896–907.

    PubMed  Google Scholar 

  • Sugumaran M. Molecular mechanisms of mammalian melanogenesis - comparison with insect cuticular sclerotization. F. E. B. S. Lett. 1991; 293: 4–10.

    Article  CAS  Google Scholar 

  • Sugumaran M. “Role of insect cuticle in immunity”. In New Directions in Invertebrate Immunology. Söderhäll, K., Iwanaga, S. and Vastha, G. eds. Fair Haven, NJ. SOS Publications. 1996. pp. 355–374.

    Google Scholar 

  • Sugumaran M. Unified mechanism for sclerotization of insect cuticle. Adv. Insect Physiol. 1998; 27: 229–334.

    Article  CAS  Google Scholar 

  • Sugumaran M, Kanost M. “Regulation of insect hemolymph phenoloxidases”. In Parasites and pathogens Beckage, N. E., Thompson, S. N., & Frederick, B. A. eds. San Diego, Academic Press. 1993; Vol. I. Parasites. pp. 317–342.

    Chapter  Google Scholar 

  • Stoltzfus A, Logsdon JM, Palmer JD, Doolittle WF. Intron “sliding” and the diversity of intron positions. Proc. Natl. Acad. Sci. USA 1997; 94: 10739–10744.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acid Res. 1994; 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara Y, Koizumi Y, Katagiri C, Ashida M. Reexamination of properties of prophenoloxidase isolated from larval hemolymph of the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 1995; 32: 14–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chase, M.R., Sugumaran, M. (2001). Genomic and cDNA Sequence of Prophenoloxidases From Drosophila Melanogaster . In: Beck, G., Sugumaran, M., Cooper, E.L. (eds) Phylogenetic Perspectives on the Vertebrate Immune System. Advances in Experimental Medicine and Biology, vol 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1291-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5481-9

  • Online ISBN: 978-1-4615-1291-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics