Skip to main content

Cytotoxic Reactions Associated with Insect Immunity

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 484))

Abstract

Insects and other invertebrates lack the immunoglobulins and adaptive responses that characterize vertebrates yet possess efficient innate immune systems comprised of both cellular and humoral elements (Gillespie et al., 1997; Vilmos and Kurucz, 1998). The evolutionary origins and molecular basis for the various recognitive mechanisms remain among the most intriguing of immunological puzzles at all levels of biological organization (Ratcliffe, 1993; Ottaviani and Franceschi, 1998). Frequently, the first line of defense against potentially invasive organisms are integumental or midgut defenses, which may involve various cytotoxic proteins and antimicrobial peptides synthesized by epidermal cells and transported to the sites of wounding (Brey et al., 1993; Furukawa et al., 1999). Foreign organisms that breach integumental barriers or instead pass through the gut wall to invade the host’s hemocoel encounter reactive blood cells, and an array of both non-specific and specific inducible cytotoxic molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aroca P, Solano F, Garcia-Borron JC, Lozano JA. Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Considerations on the enzyme active site. Biochemical Journal 1991; 277(Pt 2):393–397.

    PubMed  CAS  Google Scholar 

  • Ashida M, Brey PT. Role of the integument in insect defense - pro-phenol oxidase cascade in the cuticular matrix. Proc.Natl. Acad.Sci. USA 1995; 92(23):10698–10702.

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Cardinale S, Wang L, Reiner M, Sugumaran M. Characterization of a defense complex consisting of interleukin 1 and phenol oxidase from the hemolymph of the tobacco homworm, Manduca sexta. Journal of Biological Chemistry 1996; 271(19):11035–11038.

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Habicht GS. ,Primitive cytokines: Harbingers of vertebrate defense. Immunology Today 1991; 12:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Beck G, RF OB, Habicht GS. Invertebrate cytokines: the phylogenetic emergence of interleukin-1. Bioessays 1989; 11(2–3):62–7.

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt R, Lanz-Mendoza H, Lindquist KR, Faye I. Cell adhesion properties of hemolin, an insect immune protein in the Ig superfamily. European Journal of Biochemistry 1997; 250(3):630–7.

    Article  PubMed  CAS  Google Scholar 

  • Boman HG. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scandinavian Journal of Immunology 1998; 48(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  • Bosetto M, Arfaioli P, Ristori GG, Fusi P. Formation of melanin-yype compounds from L-tryptophan on Ca-saturated and Al-saturated clays. Fresenius Environmental Bulletin 1995; 4(6):369–374.

    CAS  Google Scholar 

  • Braun A, Hoffmann JA, Meister M. Analysis of the Drosophila host defense in domino mutant larvae, which are devoid ofhemocytes. Proceedings of the National Academy of Sciences of the United States of America 1998; 95(24):14337–14342.

    Article  PubMed  CAS  Google Scholar 

  • Brehelin M. Hemolymph coagulation in Locusta migratoria. Ann Parasitol Hum Comp 1977; 52(1):98–99.

    PubMed  CAS  Google Scholar 

  • Brey PT, Lee WJ, Yamakawa M, Koizumi Y, Perrot S, Francois M, Ashida M. Role of the integument in insect immunity: Epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 1993; 90(13):6275–6279.

    Google Scholar 

  • Carlsson A, Nystrom T, de Cock H, Bennich H. Attacin—an insect immune protein—binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 1998; 144(Pt 8):2179–2188.

    Google Scholar 

  • Carton Y, Nappi AJ. Drosophila cellular immunity against parasitoids. Parasitology Today 1997; 13(6):218–227.

    Google Scholar 

  • Chakraborty AK, Chakraborty DP. The effect of tryptophan on dopa-oxidation by melanosomal tyrosinase. International Journal of Biochemistry 1993; 25(9):1277–1280.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty AK, Platt JT, Kim KK, Kwon BS, Bennett DC, Pawelek JM. Polymerization of 5,6dihydroxyindole-2-carboxylic acid to melanin by the pmel 17/silver locus protein. European Journal of Biochemistry 1996; 236(1):180–188.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty DP, Roy S, Chakraborty AK. Vitiligo, psoralen, and melanogenesis: some observations and understanding. Pigment Cell Research 1996; 9(3):107–116.

    Article  PubMed  CAS  Google Scholar 

  • Christensen B, Fink J, Merrifield RB, Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proceedings of the National Academy of Sciences of the United States of America 1988; 85(14):5072–5076.

    Article  PubMed  CAS  Google Scholar 

  • Cociancich S, Bulet C, Hetru C, Hoffmann JA. The inducible antibacterial peptides in insects. Parasitology Today 1994; 10:131–139.

    Article  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. Journal of Biological Chemistry 1993; 268(26):19239–19245.

    PubMed  CAS  Google Scholar 

  • Cooper EL. Overview of immunoevolution. Boll. Zool. 1992; 59:119–129.

    Article  Google Scholar 

  • D’Acquisto F, Carnuccio R, d’Ischia M, Misuraca G. 5,6-Dihydroxyindole-2-carboxylic acid, a diffusible melanin precursor, is a potent stimulator of lipopolysaccharide-induced production of nitric oxide by J774 macrophages. Life Sci 1995; 57(26):PL401–6.

    Article  PubMed  Google Scholar 

  • Daffre S, Faye I. Lipopolysaccharide interaction with hemolin, an insect member of the Ig-superfamily. FEBS Lett 1997; 408(2):127–30.

    Article  PubMed  CAS  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 1999; 47:465–477.

    Article  Google Scholar 

  • d’Ischia M, Napolitano A, Prota G. Peroxidase as an alternative to tyrosinase in the oxidative polymerization of 5,6-dihydroxyindoles to melanin(s). Biochim Biophys Acta 1991; 1073(2):423–30.

    Article  PubMed  Google Scholar 

  • Duvic B, Brehelin M. Two major proteins from locust plasma are involved in coagulation and are specifically precipitated by laminarin, a beta-1,3-glucan. Insect Biochemistry & Molecular Biology 1998; 28(12):959–967.

    Google Scholar 

  • Faye I, Kanost M, editors. Function and regulation of hemolin. London: Chapman & Hall; 1997. pp. 173–188.

    Google Scholar 

  • Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, Hetru C, Hoffmann JA. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 1996; 93(3):1221–5.

    Article  PubMed  CAS  Google Scholar 

  • Foppoli C, Coccia R, Cini C, Rosei MA. Catecholamines oxidation by xanthine oxidase. Biochim Biophys Acta 1997; 1334(2–3):200–6.

    Article  PubMed  CAS  Google Scholar 

  • Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA. Croquemort, a novel Drosophila hemocyte/ macrophage receptor that recognizes apoptotic cells. Immunity 1996; 4(5):431–43.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Taniai K, Yang J, Shono T, Yamakawa M. Induction of gene expression of antibacterial proteins by chitin oligomers in the silkworm, Bombyx mori. Insect Molecular Biology 1999; 8(1):145–148.

    Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annual Review of Entomology 1997; 42:611–643.

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Scott T, Sugumaran M, Soderhall K, Law JH. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning. Proceedings of the National Academy of Sciences of the United States of America 1995; 92(17):7764–7768.

    Article  PubMed  CAS  Google Scholar 

  • Hanusova R, Bilej M, Brys L, De-Baestselier P, Beschin A. Identification of a coelomic mitogenic factor in Eisenia foetida earthworm. Immunological Letters 1999; 65:203–211.

    Article  CAS  Google Scholar 

  • Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. EASESJ 1991; 5(14):2902–9.

    CAS  Google Scholar 

  • Hegedus ZL, Frank HA, Altschule MD, Nayak U. Human plasma lipofuscin melanins formed from tryptophan metabolites. Archives of International Physiology & Biochemistry 1986; 94(5):339–48.

    Article  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999; 284:1313–1318.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM, Hetru C. Innate immunity in higher insects. Current Opinion in Immunology 1996; 8(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins TL, Morgan TD, Kramer KJ. Catecholamines in haemolymph and cuticle during larval, pupal and adult development of Manduca sexta. Insect Biochemistry 1984; 14:533–540.

    Article  CAS  Google Scholar 

  • Hughes AL. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics 1998; 47(4):283–96.

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL. Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics 1999; 49(2):106–14.

    Article  PubMed  CAS  Google Scholar 

  • Iimura Y, Ishikawa H, Yamamoto K, Sehnal F. Hemagglutinating properties of apolipophorin III from the hemolymph of Galleria mellonella larvae. Archives of Insect Biochemistry & Physiology 1998; 38(3):119–25.

    Article  CAS  Google Scholar 

  • Ito S. Reexamination of the structure of eumelanin. Biochimies et Biophysica Acta 1986; 883(1):155–161.

    Article  CAS  Google Scholar 

  • Ito S, Wakamatsu K. Melanin chemistry and melanin precursors in melanoma. Journal of Investigative Dermatology 1989; 92(5 Suppl):261S–265S.

    Google Scholar 

  • Ito S, Wakamatsu K, Ozeki H. Spectrophotometric assay of eumelanin in tissue samples. Anal Biochem 1993; 215(2):273–7.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Cervantes C, Solano F, Lozano JA, Garcia-Borron JC. The DHICA oxidase activity of the melanosomal tyrosinases LEMT and HEMT. Pigment Cell Research 1994; 7(5):298–304.

    Article  PubMed  CAS  Google Scholar 

  • Johansson MW, Soderhall K. The prophenoloxidase activating system and associated proteins in invertebrates. Progress in Molecular Subcellular Biology 1996; 15:46–66.

    Article  CAS  Google Scholar 

  • Kanost MR, Zepp MK, Ladendorff NE, Andersson LA. Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph of Manduca sexta larvae. Arch Insect Biochem Physiol 1994; 27(2):123–36.

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Motoi Y, Taniai K, Kadono-Okuda K, Yamamoto M, Higashino Y, Shimabukuro M, Chowdhury S, Xu J, Sugiyama M and others. Lipopolysaccharide-lipophorin complex formation in insect hemolymph: a common pathway of lipopolysaccharide detoxification both in insects and in mammals. Insect Biochem Mol Biol 1994; 24(6):547–55.

    Article  PubMed  CAS  Google Scholar 

  • Kotani E, Yamakawa M, Iwamoto S, Tashiro M, Mori H, Sumida M, Matsubara F, Taniai K, Kadono-Okuda K, Kato Y and others. Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta 1995; 1260(3):24558.

    Google Scholar 

  • Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D. The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. Mol Gen Genet 1992; 232(3):335–43.

    Article  PubMed  CAS  Google Scholar 

  • Kyriakides TR, McKillip JL, Spence KD. Biochemical characterization, developmental expression, and induction of the immune protein scolexin from Manduca sexta. Arch Insect Biochem Physiol 1995; 29(3):269–80.

    Article  PubMed  CAS  Google Scholar 

  • Lackie AM, Vasta GR. The role of galactosyl-binding lectin in the cellular immune response of the cockroach Periplaneta americana (Dictyoptera). Immunology 1988; 64(2):353–7.

    PubMed  CAS  Google Scholar 

  • Ladendorff NE, Kanost MR. Bacteria-induced protein P4 (hemolin) from Manduca sexta: a member of the immunoglobulin superfamily which can inhibit hemocyte aggregation. Arch Insect Biochem Physiol 1991; 18(4):285–300.

    Article  PubMed  CAS  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P. Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. Journal of Biological Chemistry 1999; 274(14):9320–6.

    Article  PubMed  CAS  Google Scholar 

  • Lanz-Mendoza H, Bettencourt R, Fabbri M, Faye I. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms. Cell Immunol 1996; 169(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 1995; 233(2):694–700.

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Lemaitre B, Imler JL. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. Journal of Molecular Biology 1998; 278(3):515–27.

    Article  PubMed  CAS  Google Scholar 

  • Lockey TD, Ourth DD. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. European Journal of Biochemistry 1996; 236(1):263–71.

    Article  PubMed  CAS  Google Scholar 

  • MacMicking J, Xie Q, Nathan C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997; 15(323–350.).

    Article  PubMed  CAS  Google Scholar 

  • Mandato CA, Diehljones WL, Downer RGH. Insect hemocyte adhesion in vitro: Inhibition by apoliphorin I and an artificial substrate. Journal of Insect Physiology 1996; 42(2):143–148.

    Article  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF. Immunoproteins in evolution. Dev Comp Immunol 1989; 13(4):285–301.

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF. On the relevance of invertebrate recognition and defence mechanisms to the emergence of the immune response of vertebrates. Scand J Immunol 1990; 32(l):13–20.

    Article  PubMed  CAS  Google Scholar 

  • Marmaras VJ, Charalambidis ND, Zervas CG. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch Insect Biochem Physiol 1996; 31(2):119–33.

    Article  PubMed  CAS  Google Scholar 

  • Marmaras VJ, Charalambidis ND, Zervas CG. Immune response in insects: The role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch Insect Biochem. Physiol. 1996; 31:119–133.

    CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640):394–7.

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Lemaitre B, Hoffmann JA. Antimicrobial peptide defense in Drosophila. BioEssays 1997; 19(11):1019–26.

    Article  PubMed  CAS  Google Scholar 

  • Minnick MF, Rupp RA, Spence KD. A bacterial-induced lectin which triggers hemocyte coagulation in Manduca sexta. Biochem Biophys Res Commun 1986; 137(2):729–35.

    Article  PubMed  CAS  Google Scholar 

  • Morishima I, Horiba T, Iketani M, Nishioka E, Yamano Y. Parallel induction if cecropin and lysozyme in larvae of the silkworm, Bombyx mori. Developmental & Comparative Immunology 1995; 19(5):357–363.

    Google Scholar 

  • Morishima I, Yamano Y, Inoue K, Matsuo N. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Letters 1997; 419(1):83–6.

    Article  PubMed  CAS  Google Scholar 

  • Mosca L, Blarzino C, Coccia R, Foppoli C, Rosei MA. Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties. Free Radical Biology & Medicine 1998; 24(1):161–7.

    Article  CAS  Google Scholar 

  • Mosca L, Foppoli C, Coccia R, Rosei MA. Pheomelanin production by the lipoxygenase-catalyzed oxidation of 5-S-cysteinyldopa and 5-S-cysteinyldopamine. Pigment Cell Research 1996; 9(3):117–25.

    Article  PubMed  CAS  Google Scholar 

  • Muta T, Iwanaga S. The role of hemolymph coagulation in innate immunity. Current Opinion in Immunology 1996; 8(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  • Muta T, Oda T, Iwanaga S. Horseshoe crab coagulation factor B. A unique serine protease zymogen activated by cleavage of an Ile-Ile bond. J Biol Chem 1993; 268(28):21384–8.

    PubMed  CAS  Google Scholar 

  • Nappi AJ. Hemocyte reactions and early cellular changes during melanotic tumor formation in Drosophila melanogaster. J. Invertebr. Pathol 1984; 43:395–406.

    Article  Google Scholar 

  • Nappi AJ, Carton Y. Cellular immune responses and their genetic aspects in Drosophila. In: Brehelin M, editor. Immunity in Invertebrates. Berlin: Springer-Verlag; 1986. p 171–187.

    Chapter  Google Scholar 

  • Nappi AJ, Carton Y, Frey F. Parasite-induced enhancement of hemolymph tyrosinase activity in a selected immune reactive strain of Drosophila melanogaster. Arch Insect Biochem Physiol 1991; 18(3):159–68.

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Carton Y, Li J, Vass E. Reduced cellular immune competence of a temperature-sensitive dopa decarboxylase mutant strain of Drosophila melanogaster against the parasite Leptopilina boulardi Comp. Biochem. Physiol. 1992; 101B:453–460.

    CAS  Google Scholar 

  • Nappi AJ, Vass E. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 1993; 6(3):117–26.

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E. Hydrogen peroxide production in immune-reactive Drosophila melanogaster. Journal of Parasitology 1998; 84(6):1150–7.

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E. Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochimica et Biophysica Acta 1998; 1380:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E, Carton Y, Frey F. Identification of 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole and N-acetylarterenone during eumelanin formation in immune reactive larvae ofDrosphila melanogaster. Arch. Insect Biochem Physiol 1992; 20: 181–191.

    Article  CAS  Google Scholar 

  • Nappi AJ, Vass E, Frey F, Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol 1995; 68(4):450–6.

    PubMed  CAS  Google Scholar 

  • Nayar JK, Mikarts LL, Chikilian ML, Knight JW, Bradley TJ. Lectin binding to extracellularly mclanized microfilariae of Brugia malayi from the hemocoel of Anopheles quadrimaculatus. J Invertebr Pathol 1995; 66(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  • Nelson RE, Fessler LI, Takagi Y, Blumberg B, Keene DR, Olson PF, Parker CG, Fessier JH. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. Embo J 1994; 13(15):3438–47.

    PubMed  CAS  Google Scholar 

  • Ochiai M, Ashida M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. Journal of Biological Chemistry 1999; 274(17):11854–8.

    Article  CAS  Google Scholar 

  • Ottaviani E, Capriglione T, Franceschi C. Invertebrate and vertebrate immune cells express pro-opiomelanocortin (POMC) mRNA. Brain Behav Immun 1995; 9(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Caselgrandi E, Franceschi C. Cytokines and evolution: in vitro effects of IL-1 alpha, IL-1 beta, TNF-alpha and IMF-beta on an ancestral type of stress response. Biochem Biophys Res Commun 1995; 207(1):288–92.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Franceschi C. A new theory on the common evolutionary origin of natural immunity, inflammation and stress response: the invertebrate phagocytic immunocyte as an eye-witness. Domestic Animal Endocrinology 1998; 15(5):291–6.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Cassanelli S, Genedani S. Cytokines and invertebrate immune responses. Biology of the Cell 1995; 85(1):87–91.

    PubMed  CAS  Google Scholar 

  • Parrinello N. Humoral and cellular lectins of ascidians. J. Mar. Biotechnol. 1995; 3:29–34.

    Google Scholar 

  • Pentz ES, Black BC, Wright TRF. Mutation affecting phenol oxidase activity in Drosophila: quicksilver and tyrosinase-i. Biochem. Genetics 1990; 28:151–171.

    CAS  Google Scholar 

  • Pentz ES, Wright TR. Drosophila melanogaster diphenol oxidase A2: gene structure and homology with the mouse mast-cell tum-transplantation antigen, P91A. Gene 1991; I 03(2):239–42.

    Article  Google Scholar 

  • Prota G. The role of peroxidase in melanogenesis revisited. Pigment Cell Res 1992; Suppl(2):25–31.

    Google Scholar 

  • Prota G, Lamoreux ML, Muller J, Kobayashi T, Napolitano A, Vincensi MR, Sakai C, Hearing VJ. Comparative analysis of melanins and melanosomes produced by various coat color mutants. Pigment Cell Research 1995; 8(3):153–163.

    Article  PubMed  CAS  Google Scholar 

  • Raftos DA, Cooper EL. Proliferation of lymphocyte-like cells from the solitary tunicate, Styela clava, in response to allogeneic stimuli. J Exp Zool 1991; 260(3):391–400.

    Article  PubMed  CAS  Google Scholar 

  • Raftos DA, Cooper EL, Habicht GS, Beck G. Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci U S A 1991; 88(21):9518–22.

    Article  PubMed  CAS  Google Scholar 

  • Ratios DA, Cooper EL, Stillman DL, Habicht GS, Beck G. Invertebrate cytokines II: release of interleukin1-like molecules from tunicate hemocytes stimulated with zymosan. Lymphokine Cytokine Res 1992; I1(4):235–40.

    Google Scholar 

  • Ratcliffe NA. The prophenoloxidase system and its role in arthropod immunity. In: Wan GW, Cohen N, editors. Phylogenesis of Immune Functions. Boca Raton, FL: CRC Press; 1991. p 45–71.

    Google Scholar 

  • Ratcliffe NA. Cellular defense responses of insects: unresolved problems. In: Beckage NE, Thompson SN, Federici BA, editors. Parasites and Pathogens of Insects. San Diego: Academic Press; 1993. p 267–304.

    Chapter  Google Scholar 

  • Ratcliffe NA, Brookman JL, Rowley AF. Activation of the prophenoloxidase cascade and initiation of nodule formation in locusts by bacterial lipopolysaccharides. Dev Comp Immunol 1991; 15(1–2):33–9.

    Article  PubMed  CAS  Google Scholar 

  • Riley PA. Melanin. International Journal of Biochemistry & Cell Biology 1997; 29(11):1235–9.

    Google Scholar 

  • Rizki TM, Rizki RM. The cellular defense system of Drosophila melanogaster. In: King RC, H. Akai H, editors. Insect ultrastructure. Volume 2. New York: Plenum Press; 1984. p 579–604.

    Chapter  Google Scholar 

  • Rizki TM, Rizki RM. Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of Drosophila melanogaster. J. Insect Physiol. 1990; 36:523–529.

    Article  Google Scholar 

  • Rosei MA. Melanins from opioid peptides. Pigment Cell Res 1996; 9(6):273–80.

    Article  PubMed  CAS  Google Scholar 

  • Rosei MA, Blarzino C, Coccia R, Foppoli C, Mosca L, Cini C. Production of melanin pigments by cytochromec/H2O2 system. International Journal of Biochemistry & Cell Biology 1998; 30(4):457–63.

    Article  CAS  Google Scholar 

  • Rosei MA, Blarzino C, Foppoli C, Mosca L, Coccia R. Lipoxygenase-catalyzed oxidation of catecholamines. Biochem Biophys Res Commun 1994; 200(1):344–50.

    Article  PubMed  CAS  Google Scholar 

  • Rosei MA, Mosca L. Production of melanin pigments by chemical and enzymatic oxidation of tetrahydroisoquinolines. Biochemistry & Molecular Biology International 1995; 35(6):1253–9.

    CAS  Google Scholar 

  • Rosei MA, Mosca L, Coccia R, Blarzino C, Musci G, De Marco C. Some biochemical properties of melanins from opioid peptides. Biochim Biophys Acta 1994; 1199(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  • Rosei MA, Mosca L, De Marco C. Spectroscopic features of native and bleached opio-melanins. Biochim BiophysActa 1995; 1243(1):71–7.

    Article  Google Scholar 

  • Rosetto M, Manetti AG, Giordano PC, Marri L, Amons R, Baldari CT, Marchini D, Dallai R. Molecular characterization of ceratotoxin C, a novel antibacterial female-specific peptide of the ceratotoxin family from the medfly Ceratitis capitata. European Journal of Biochemistry 1996; 241(2):330–7.

    Article  PubMed  CAS  Google Scholar 

  • Rowley AF. The role of the haemocytes of Clitumnus extradentatus in haemolymph coagulation. Cell Tissue Res 1977; 182(4):513–24.

    Article  PubMed  CAS  Google Scholar 

  • Rozanowska M, Sama T, Land EJ, Truscott TG. Free radical scavenging properties of melanin interaction of eu-and pheo-melanin models with reducing and oxidising radicals. Free Rad. Biol. Med. 1999; 26:518–525.

    CAS  Google Scholar 

  • Russell V, Dunn PE. Antibacterial proteins in the midgut of Manduca sexta during metamorphosis. Journal of Insect Physiology 1996; 42(1):65–71.

    Article  Google Scholar 

  • Russo J, Dupas S, Frey F, Carton Y, Brehelin M. Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 1996; 112(Pt 1):135–42.

    Article  PubMed  Google Scholar 

  • Samakovlis C, Kylsten P, Kimbrell DA, Engstrom A, Hultmark D. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. Embo J 1991; 10(1):163–9.

    PubMed  CAS  Google Scholar 

  • Sato T, Endo Y, Matsushita M, Fujita T. Molecular characterization of a novel serine protease involved in activation of the complement system by mannose-binding protein. International Immunology 1994; 6(4):665–669.

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter K, Slominski A, Pawelek JM, Jimbow K, Gilchrest BA. What controls melanogenesis? Experimental Dermatology 1998; 7(4):143–50.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Faye I, Lindstrom-Dinnetz I, Sun SC. Specific immune recognition of insect hemolin. Dev Comp Immunol 1993; 17(3):195–200.

    Article  PubMed  CAS  Google Scholar 

  • Shalev A, Segal S, Eli MB. Evolutionary conservation of brain Thy-1 glycoprotein in vertebrates and invertebrates. Dev Comp Immunol 1985; 9(3):497–509.

    Article  PubMed  CAS  Google Scholar 

  • Shin SW, Park SS, Park DS, Kim MG, Kim SC, Brey PT, Park HY. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochemistry & Molecular Biology 1998; 28(11):827–37.

    Article  CAS  Google Scholar 

  • Slominski A, Paus R, Mihm MC. Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: selective review and hypothesis. Anticancer Research 1998; 18(5B):3709–15.

    PubMed  CAS  Google Scholar 

  • Soderhall K, AspanA. Prophenoloxidase activating system and its role in cellular communication. In: Pathak JPN, editor. Insect immunity. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.; 1993. p 113–129.

    Google Scholar 

  • Soderhall K, Cerenius L, Johansson MW. The prophenoloxidase activating system and its role in invertebrate defence. Ann N Y Acad Sci 1994; 712:155–61.

    Article  PubMed  CAS  Google Scholar 

  • Stanley DW. Eicosanoids mediate insect cellular immune reactions to bacterial infections. Advances in Experimental Medicine & Biology 1997; 433:359–62.

    CAS  Google Scholar 

  • Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW. Insect immune response to bacterial infection is mediated 15y eicosanoids. Proc Natl Acad Sci U S A 1991; 88(3):1064–8.

    Article  PubMed  CAS  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J, Neurosci. Res.1999; 55:659–665.

    Article  CAS  Google Scholar 

  • Su XD, Gastinel LN, Vaughn DE, Faye I, Poon P, Bjorkman PJ. Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. Science 1998; 281(5379):991–5.

    Article  PubMed  CAS  Google Scholar 

  • Sun SC, Lindstrom 1, Boman HG, Faye I, Schmidt O. Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 1990; 250(4988):1729–32.

    Article  PubMed  CAS  Google Scholar 

  • Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, Tempst P, Hultmark D. Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 1996; 271(22):12708–15.

    Article  PubMed  CAS  Google Scholar 

  • Thiel S, Vorupjensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U and others. A second serine protease associated with mannan-binding lectin that activates complement. Nature 1997; 386(6624):506–510.

    Article  PubMed  CAS  Google Scholar 

  • Trenczek T. Endogenous defense mechanisms of insects. Zoology 1998; 101:298–315.

    Google Scholar 

  • Uscian JM, Stanley-Samuelson DW. Phospholipase A2 activity in the fat body of the tobacco hornworm Manduca sexta. Arch Insect Biochem Physiol 1993; 24(4):187–201.

    Article  PubMed  CAS  Google Scholar 

  • Vass E, Nappi AJ, Carton Y. Alterations in the activities of tyrosinase, N-acetyltransferase, and tyrosine aminotransferase in immune reactive larvae of Drosophila melanogaster. Dev Comp Immunol 1993; 17(2):109–18.

    Article  CAS  Google Scholar 

  • Vasta GR, Ahmed H. Animal lectins as cell surface receptors: current status for invertebrate species. Progress in Molecular & Subcellular Biology 1996; 17:158–182.

    Article  CAS  Google Scholar 

  • Vasta GR, Ahmed H, E. FN, T. EM, G. MA, Snowden A, Odom EW. Animal lectins as self/non-self recognition molecules: Biochemical and genetic approaches to understanding their biological roles and evolution. Annals of the New York Academy of Sciences 1994; 712:55–73.

    Article  PubMed  CAS  Google Scholar 

  • Vilmos P, Kurucz E. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunology Letters 1998; 62(2):59–66.

    Article  PubMed  CAS  Google Scholar 

  • Winder A, Kobayashi T, Tsukamoto K, Urabe K, Aroca P, Kameyama K, Hearing VJ. The tyrosinase gene family—interactions of melanogenic proteins to regulate melanogenesis. Cell Mol Biol Res 1994; 40(78):613–26.

    PubMed  CAS  Google Scholar 

  • Wright TRF. The genetic of biogenic amine metabolism, sclerotization and melanization in Drosophila melanogaster. Adv Genet 1987; 24:127–222.

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Kanost MR. In search of a function for hemolin, a hemolymph protein from the immunoglobulin superfamily. Journal of Insect Physiology 1996; 42(1):73–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nappi, A.J., Vass, E. (2001). Cytotoxic Reactions Associated with Insect Immunity. In: Beck, G., Sugumaran, M., Cooper, E.L. (eds) Phylogenetic Perspectives on the Vertebrate Immune System. Advances in Experimental Medicine and Biology, vol 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1291-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5481-9

  • Online ISBN: 978-1-4615-1291-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics