Advertisement

Hemolymph Proteinases in Immune Responses of Manduca sexta

  • Michael R. Kanost
  • Haobo Jiang
  • Yang Wang
  • Xiao-Qiang Yu
  • Congcong Ma
  • Yifei Zhu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)

Abstract

Extracellular signal transduction pathways in blood are often composed of cascades of serine proteinases to amplify rapidly a response to wounding or infection. The vertebrate blood coagulation and complement pathways are the most fully characterized of such proteinase cascades. Serine proteinases also play important roles in defensive responses in hemolymph of arthropods. The hemolymph coagulation system of horseshoe crabs has been very nicely elucidated to function as a complex and intricately regulated proteinase cascade for protection against microbial infection (Kawabata et al., 1996).

Keywords

Serine Proteinase Horseshoe Crab Phenol Oxidase Lepidopteran Insect Hemolymph Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, T., Fujitani, N., Hayakawa, Y., Ohnishi, A., Ohkubo, T., Kumaki, Y., Kawano, K., Hikichi, K., and Nitta, K. (1999) Solution structure of an insect growth factor, growth-blocking peptide. J. Biol. Chem. 274, 1887–1890.PubMedCrossRefGoogle Scholar
  2. Ashida, M., and Brey, P.T. (1998) Recent advances on the research of the insect prophenolxidase cascade. In Molecular Mechanisms oflmmuneResponses in Insects (Brey, P.T. and Hultmark, D. eds.), Chapman & Hall, London pp.135–172.Google Scholar
  3. Belvin, M. and Anderson, K. (1996) A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Ann. Rev. Cell. Dev. Biol. 12: 393–416.CrossRefGoogle Scholar
  4. Chain, B.M. and Anderson, R.S. (1983) Inflammation in insects: the release of a plasmatocyte depletion factor following interaction between bacteria and haemocytes. J. Insect Physiol. 29, 1–4.CrossRefGoogle Scholar
  5. Clark, K.D., Pech, L.L., and Strand, M.R. (1997) Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440–23447.CrossRefGoogle Scholar
  6. Clark, K.D., Witherell, A., and Strand, M.R. (1998) Plasmatocyte spreading peptide is encoded by an mRNA differentially expressed in tissues of the moth Pseudoplusia includens. Bioch. Biochem. Res. Commun. 250, 479–485.CrossRefGoogle Scholar
  7. Finnerty, C.M., Karplus, P.A., and Granados, R.R. (1999) The insect immune protein scolexin is a novel serine proteinase homolog. Protein Sci. 8:242–248.PubMedCrossRefGoogle Scholar
  8. Geng, C. and Dunn, P.E. (1989) Plasmatocyte depletion in larvae of Manduca sexta following injection of bacteria. Dev. Comp. Immunol. 13, 17–23.PubMedCrossRefGoogle Scholar
  9. Hayakawa, Y. (1991) Structure of a growth-blocking peptide present in parasitized insect hemolymph. J.Biol.Chem. 266, 7982–7982.PubMedGoogle Scholar
  10. Hayakawa, Y., Ohnishi, A., Yamanaka, A., Izumi, S., and Tomino, S. (1995) Molecular cloning and characterization of cDNA for insect biogenic peptide, growth blocking peptide. FEBS Lett. 376, 185–189.PubMedCrossRefGoogle Scholar
  11. Hoffmann, J. and Reichhart, J. (1997) Drosophila immunity. Trends Cell Biol. 7: 309–316.CrossRefGoogle Scholar
  12. Jiang, H. and Kanost, M.R. (1999) The clip domain family of serine proteinases from arthropod hemolymph. Insect Biochem. Molec. Biol. In press.Google Scholar
  13. Jiang H., Wang, Y., Huang, Y., Mulnix, A.B., Kadel, J., Cole, K., and Kanost, M.R. (1996) Organization of serpin gene-1 from Manduca sexta: evolution of a family of alternate exons encoding the reactive site loop. J. Biol. Chem. 271: 28017–28023PubMedCrossRefGoogle Scholar
  14. Jiang, H. and Kanost, M.R. (1997) Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem. 272: 1082–1087.CrossRefGoogle Scholar
  15. Jiang, H., Wang, Y., and Kanost, M.R. (1998) Pro-phenol oxidase activating proteinasc from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Nat!. Acad. Sci. USA 95, 12220–12225.PubMedCrossRefGoogle Scholar
  16. Jiang, H., Wang, Y., and Kanost, M.R. (1999) Four serine proteinases expressed in Manduca sexta haemocytes. Insect Mol. Biol. 8, 39–53.PubMedCrossRefGoogle Scholar
  17. Kanost, M.R. and Jiang, H. (1996) Proteinase inhibitors in invertebrate immunity. In “New Directions in Invertebrate Immunology”, (K. Söderhäll, S. Iwanaga and G. Vasta, eds.) SOS Publications, Fair Haven, NJ. pp. 155–173.Google Scholar
  18. Kanost, M.R. and Jiang, H. (1997) Serpins from an insect, Manduca sexta. In “Chemistry and Biology of Serpins”, (F.C. Church, D.D. Cunningham, D. Ginsburg, M. Hoffinan, S.R. Stone, and D.M. Tollefsen, eds.) Plenum, New York, pp. 155–161.CrossRefGoogle Scholar
  19. Kanost, M.R., Prasad, S.V. and Wells, M.A. (1989) Primary structure ofa member of the serpin superfamily of proteinase inhibitors from an insect, Manduca sexta. J. Biol. Chem. 264, 965–972.Google Scholar
  20. Kawabata, S., Muta, T. and Iwanaga, S. (1996) The clotting cascade and defense molecules found in the hemolymph of the horseshoe crab. In “New Directions in Invertebrate Immunology”, (K. Söderhäll, S. Iwanaga and G. Vasta, eds.) SOS Publications, Fair Haven, NJ. pp. 255–283.Google Scholar
  21. Lee, S.Y., Cho, M.Y., Hyun, H.H., Lee, K.M., Homma, K., Natori, S., Kawabata, S., Iwanaga, S., and Lee, B.L. (1988) Molecular cloning of cDNA for pro-phenol-oxidase activating factor I, a serine proteinase is induced by lipopolysaccharide or 1,3-B-glucan in a coleopteran insect, Holotrichia diamphalia larvae. Eur. J. Biochem. 257, 615–621.CrossRefGoogle Scholar
  22. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.PubMedCrossRefGoogle Scholar
  23. Li, J., Wang, Z., Canagarajah, B., Jiang, H., Kanost, M., and Goldsmith, E.J. (1999) The structure of active serpin 1K from Manduca sexta. Structure 7, 103–109.CrossRefGoogle Scholar
  24. Satoh, D., Horii, A., Ochiai, M., and Ashida, M. (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J Biol. Chem. 274, 7441–7453.Google Scholar
  25. Skinner, W.S., Dennis, P.A, Li, J.P., Summerfelt, R.M., Carney, R.L., and Quistad, G.B. (1991) Isolation and identification of paralytic peptides from hemolymph of the lepidopteran insects Manduca sexta,Spodoptera exigua, and Heliothis virescens. J. Biol. Chem. 266, 12873–12877.PubMedGoogle Scholar
  26. Söderhäll,K.,Ceranius,L. Johansson,M.W. (1996) The prophenoloxidase activating system in invertebrates. In “New Directions in Invertebrate Immunology”,(K. Söderhäll, S. Iwanga and G. Vasta,cds.) SOS Publications, Fair Haven,NJ. pp. 229–253.Google Scholar
  27. Turner, M. W. (1996) Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today 17, 532–540.PubMedGoogle Scholar
  28. Volkman, B.F., Anderson, M.E., Clark, K.D., Hayakawa, Y., Strand, M.R., and Markley, J.L. (1999) Structure of the insect cytokine peptide plasmatocyte-spreading peptide I from Pseudoplusia includens. J. Biol. Chem. 274, 4493–4496.CrossRefGoogle Scholar
  29. Wang, Y., Jiang, H. and Kanost, MR. (1999) Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochem. Molec. Biol. In press.Google Scholar
  30. Yu, X.-Q., Prakash, O., and Kanost, M.R. (1999a) Structure of a paralytic peptide from an insect, Manduca sexta. J. Peptide Res. In press.Google Scholar
  31. Yu, X.-Q., Gan, H., and Kanost, M.R. (1999b) An inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem. Molec. Biol. 29: 585–597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Michael R. Kanost
    • 1
  • Haobo Jiang
    • 1
  • Yang Wang
    • 1
  • Xiao-Qiang Yu
    • 1
  • Congcong Ma
    • 1
  • Yifei Zhu
    • 1
  1. 1.Department of BiochemistryKansas State UniversityManhattan

Personalised recommendations