Skip to main content

Lectins From Tunicates: Structure-Function Relationships in Innate Immunity

  • Chapter
Phylogenetic Perspectives on the Vertebrate Immune System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 484))

Abstract

Since the discovery of lectins in the 1890s, it has remained a challenge to define the biological function(s). A basic premise of lectin study is that their physiological function(s) relate to their carbohydrate-binding properties. Thus, detailed and useful descriptions of tissue distribution, sugar specificity, and molecular structures are available for many lectins. From the earliest reports, possible roles in fertilization and immune responses have been investigated. Lectins secreted from the albumin gland of the snail Helix pomatia able to agglutinate erythrocytes (Camus, 1899) were later named “protectins” to suggest that these protect against microbial or fungal infection (Prokop, 1965). Studies on arthropod species, such as the horseshoe crab Limulus polyphemus, the lobster Homarus americanus,the crab Eupagurus prideauxii, and the spider crab Maia squinado, extended the hemagglutination properties to hemolymph lectins, providing evidence that expression of these proteins is inducible by challenge with agglutinated bacteria, and furthermore that the induced lectins have opsonic properties (Cantacuzene, 1919).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, H., Pohl, J., Fink, N.E., Strobel, F., and G.R. Vasta The primary structure and carbohydrate specificity of a beta-galactosyl-binding lectin from toad (Bufo arenarum Hensel) ovary reveal closer similarities to the mammalian galectin-1 than to the galectin from the clawed frog Xenopus laevis, J. Biot. Chem., 1996, 271, 33083–33094.

    Article  CAS  Google Scholar 

  • Al-Sharif, W.Z., J.O. Sunyer, J.D. Lambris, and L.C. Smith Sea urchin coelomocytes specifically express a homologue of the complement component C3. J. Immunol., 1998, 160, 2983–2997.

    PubMed  CAS  Google Scholar 

  • Alsenz, J., D. Avila, H.P. Huemer, I. Esparza, J.D. Becherer, T. Kinoshita, Y. Wang, S. Oppermann, and J.D. Lambris Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sies, concanavalin A binding sites and thiolester bond in the C3 from different species. Dev Comp. Immun!., 1992, 16, 63–76.

    Article  CAS  Google Scholar 

  • Avni, O., Z. Pur, E. Yefenof, and M. Baniyash Complement receptor 3 of macrophages is associated with galectin-I-like protein. J. Immunol., 1998, 160, 6151–6158.

    PubMed  CAS  Google Scholar 

  • Azumi K., Ozeki S., Yokosawa H, and S. Ishii A novel lipopolysaccharide-binding hemagglutinin isolated from hemocytes of the solitary ascidian, Halocynthia roretzi: it can agglutinate bacteria. Dev Comp Immunol. 1991 Winter;15(1–2):9–16.

    Article  PubMed  CAS  Google Scholar 

  • Baish, M.A., R.L. Lohr, and S. Bartl Molecular evidence for complement and alpha 2-macroglobulin family members in the colonial ascidian. Botryllus schlosseri. Dev. Comp. Immunol., 1997, 21, 147.

    Article  Google Scholar 

  • Ballarin L., Tonello C., Guidolin L., and A. Sabbadin Purification and characterization of ahumoral opsonin, with specificity for D-galactose, in the colonial ascidian Botryllus schlosseri.. Comp Biochem Physiol B Biochem Mol Biol. 1999 May;123(1): 115–23.

    Article  CAS  Google Scholar 

  • Barondes, S.H., D.N.W. Cooper, M.A. Gitt, and H. Leffler Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem., 1994, 294, 20807–20810.

    Google Scholar 

  • Belogortseva N., Molchanova V., Glazunov V., Evtushenko E., and P. Luk’yanov N-Acetyl-D-glucosaminespecific lectin from the ascidian Didemnum ternatanum. Biochim Biophys Acta. 1998 Apr 10;1380(2):249–56.

    Article  CAS  Google Scholar 

  • Camus, M.L. Recherches experimentales sur une agglutinine produite par la glande dc l’albumen chez l’ Helix pomatia. C.R. Acad. Sci., 1899, 129, 233.

    CAS  Google Scholar 

  • Cantacuzene, J. Sur certains anticorps naturels observes chez Eupagurus prideauxii. C.R. Soc. Biol., 1912, 73, 663.

    Google Scholar 

  • Chen C, Rowley AF, Newton RP, and N.A. Ratcliffe Identification, purification and properties of a beta1,3-glucan-specific lectin from the serum of the cockroach, Blaberus discoidalis which is implicated in immune defence reactions. Comp Biochem Physiol B Biochem Mol Biol. 1999 Mar;I22(3):309–19.

    Article  Google Scholar 

  • Drickamer, K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature, 1992, 360, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Ezekowitz RA, Williams DJ, Koziel H, Armstrong MY, Warner A, Richards FF, and RM Rose Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature. 1991 May 9;351(6322):1558.

    Article  Google Scholar 

  • Fujita Y., Kurata S., Homma K., and S. Natori A novel lectin from Sarcophaga. Its purification, characterization, and cDNA cloning. JBiol Chem. 1998 Apr 17;273(16):9667–72.

    Article  CAS  Google Scholar 

  • Gadjeva, M., A.W. Dodds, A. Taniguchi-Sidle, A.C. Willis, D.E. Isenman, and S.K.A. Law The covalent binding reaction of complement component C3. J. Immunol., 1998, 161, 985–990.

    PubMed  CAS  Google Scholar 

  • Giga Y, Ikai A, and K. Takahashi The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins. JBiol Chem. 1987 May 5;262(13):6197–203.

    CAS  Google Scholar 

  • Hatakeyama T., Kohzaki H., Nagatomo H., Yamasaki N. Purification and characterization of four Cat+-dependent lectins from the marine invertebrate, Cucumaria echinata. J. Biochem., 1994, 116, 209–214.

    CAS  Google Scholar 

  • Hayat U, Reddy GP, Bush CA, Johnson JA, Wright AC, and JG, Jr, Morris Capsular types of Vibrio vulnfiicus: an analysis of strains from clinical and environmental sources. JInfect Dis. 1993 Sep;168(3):758–62.

    Article  CAS  Google Scholar 

  • Haq S Kubo T, Kurata S, Kobayashi A, and S Natori Purification, characterization, and eDNA cloning of a galactose-specific C-type lectin from Drosophila melanogaster. JBiol Chem. 1996 Aug 16;271(33):202–138.

    Google Scholar 

  • Himeshima T., Hatakeyama T., and Yamasaki N. Amino acid sequence of a lectin from the sea cucumber, Stichopus japonicus, and its structural relationship to the C-type animal lectin family. J. Biochem., 1994, 115,689–692.

    PubMed  CAS  Google Scholar 

  • Hirabayashi, J., ed. Recent topics on galectins.Trends Glycosci. Glycotechnol. Vol. 9. 1997. 1–180.

    Article  Google Scholar 

  • Jackson AD, Smith VJ, and CM Peddie In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Dev Comp Immunol. 1993 Mar-Apr;17(2):97–108.

    Article  PubMed  CAS  Google Scholar 

  • Ji, X., K. Azumi, M. Sasaki, and M. Nonaka Ancient origin of the complement lectin pathway revealed by molecular cloning ofmannan binding protein-associated serine protease from a urochordate, the Japanese ascidian, Halocynthia roretzi. Proc. NatL Acad. Sci. USA, 1997, 94, 6340–6345.

    Article  CAS  Google Scholar 

  • Laursen, S.B., T.S. Dalgaard, S. Thiel, B.L. Lim, T.V. Jensen, H.R. Juul-Madsen, A. Takahashi, T. Hamana, M. Kawakami, and J.C. Jensenius Cloning and sequencing of a eDNA encoding chicken marman-binding lectin (MBL) and comparison with mammalian analogues. Immunology, 1998, 93, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Magor KE, and G.R. Vasta Ancestral immunity comes of age. Immunol Today. 1998 Feb;19(2):54–6.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, M. and T. Fujita Activation of the classical complement pathway by mannose-binding protein in association with a novel Cls-like serine protease. J. Exp. Med., 1992, 176, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  • Mavroidis, M., J.O. Sunyer, and J.D. Lambris Isolation, primary structure, and evolution of the third component of chicken complement and evidence for a new member of the a2-macroglobulin family. J. Immunol., 1995, 154, 2164–2174.

    PubMed  CAS  Google Scholar 

  • Muramoto K, and H Kamiya The amino-acid sequence of multiple lectins of the acorn barnacle Megabalanus rosa and its homology with animal lectins. Biochim Biophys Acta. 1990 May 31;1039(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  • Prokop, O., G. Uhlenbruck, and W. Kohler A “new” human blood group receptor Abel tested with saline extracts from Helix hortensis (garden snail). J. Forensic Med., 1965, 12, 108.

    PubMed  CAS  Google Scholar 

  • Schweinle JE, Ezekowitz RA, Tenner M, Kuhlman M, and KA Joiner Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannoserich isolate of Salmonella. J Clin Invest. 1989 Dec;84(6):1821–9.

    Article  CAS  Google Scholar 

  • Sugumaran M. Molecular mechanisms for mammalian melanogenesis. Comparison with insect cuticular sclerotization. FEBS Lett. 1991 Dec 16;295(1–3):233–9.

    Article  PubMed  CAS  Google Scholar 

  • Sumiya, M., M. Super, P. Tahona, R.J. Livinsky, T. Arai, M.W. Turner, and J.A. Summerfield Molecular basis of opsonic defect in immunodeficient children. Lancet, 1991, 337, 1569–1570.

    Article  PubMed  CAS  Google Scholar 

  • Sunyer, J.O., L. Tort, and J.D. Lambris Diversity of the third form of complement, C3, in fish: functional characterization of five forms of C3 in the diploid fish Sparus aurata. Biochem J., 1997, 326, 877–881.

    CAS  Google Scholar 

  • Takamatsu N, Takeda T, Kojima M, Heishi M, Muramoto K, Kamiya H, T ShibaAcom barnacle Megabalanus rosa lectin (BRA-3): eDNA cloning, gene structure and seasonal changes of mRNA and protein levels. Gene. 1993 Jun 30;128(2):251–5.

    Article  PubMed  CAS  Google Scholar 

  • Thiel, S., T. Vorup-Jensen, C.M. Stover, W. Schwaeble, S.B. Laursen, K. Paulsen, A.C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K.B.M. Reid, and J.C. Jensenius A second serine protease associated with mannan-binding lectin that activates complement. Nature, 1997, 386, 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Valdimarsson H, Stefansson M, Vikingsdottir T, Arason GJ, Koch C, Thiel S, and J.C. Jensenius Reconstitution of opsonizing activity by infusion of mannan-binding lectin (MBL) to MBL-deficient humans. Scand J Immunol. 1998 Aug;48(2):116–23.

    Article  PubMed  CAS  Google Scholar 

  • Vasta GR, and J.J. Marchalonis Distribution, specificity and macromolecular properties of tunicate plasma lectins. Prog Clin Biol Res. 1984;157:125–41.

    PubMed  CAS  Google Scholar 

  • Vasta G.R, Marchalonis, J.J., Decker, J.M. Binding and mitogcnic properties of a galactosyl-specific lectin from the tunicate Didemnum candidum for murine thymocytes and splenocytes. J. Immunol., 1986a, 137,3216–3223.

    CAS  Google Scholar 

  • Vasta GR, and J.J. Marchalonis Galactosyl-binding lectins from the tunicate Didemnum candidum. Carbohydrate specificity and characterization of the combining site. JBiol Chem. 1986b Jul 15;261(20):9182–6.

    CAS  Google Scholar 

  • Vasta GR, Hunt JC, Marchalonis JJ, and WW Fish Galactosyl-binding lectins from the tunicate Didcmnum candidum. Purification and physicochemical characterization. JBiol Chem. 1986e Jul 15;261(20):917481.

    Google Scholar 

  • Vasta, G.R., M.S. Quesenberry, and H. Ahmed, A tunicate fucose-binding lectin is a homologue of the mammalian binding proteins, In New Directions in Invertebrate Immunology, eds. Soderhall, K., Iwanaga, S., Vasta, G.R. SOS Publications, Fair Haven, N.J., 1996, pp. 189–227.

    Google Scholar 

  • Vasta, G.R., H. Ahmed, L.M. Amzcl, and M.A. Bianchet Galectins from amphibian species: carbohydrate specificity, molecular structure, and evolution. Trends In Glycoscisciences Glycotechnology, 1997, 9, 131–144.

    Article  CAS  Google Scholar 

  • Vasta, G.R., M.S. Quesenberry, H. Ahmed, and N. O’Leary, C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway, Dev. Comp. Immunol., 1996, 23, 401–420.

    Google Scholar 

  • Weis, W.I., M.E. Taylor, and K. Drickamer The C-type lectin superfamily in the immune system. Immunol. Rev., 1998, 163, 19–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vasta, G.R., Quesenberry, M.S., Hafiz, A., O’Leary, N. (2001). Lectins From Tunicates: Structure-Function Relationships in Innate Immunity. In: Beck, G., Sugumaran, M., Cooper, E.L. (eds) Phylogenetic Perspectives on the Vertebrate Immune System. Advances in Experimental Medicine and Biology, vol 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1291-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5481-9

  • Online ISBN: 978-1-4615-1291-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics