Advertisement

Lectins From Tunicates: Structure-Function Relationships in Innate Immunity

  • Gerardo R. Vasta
  • Michael S. Quesenberry
  • Ahmed Hafiz
  • Nuala O’Leary
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)

Abstract

Since the discovery of lectins in the 1890s, it has remained a challenge to define the biological function(s). A basic premise of lectin study is that their physiological function(s) relate to their carbohydrate-binding properties. Thus, detailed and useful descriptions of tissue distribution, sugar specificity, and molecular structures are available for many lectins. From the earliest reports, possible roles in fertilization and immune responses have been investigated. Lectins secreted from the albumin gland of the snail Helix pomatia able to agglutinate erythrocytes (Camus, 1899) were later named “protectins” to suggest that these protect against microbial or fungal infection (Prokop, 1965). Studies on arthropod species, such as the horseshoe crab Limulus polyphemus, the lobster Homarus americanus,the crab Eupagurus prideauxii, and the spider crab Maia squinado, extended the hemagglutination properties to hemolymph lectins, providing evidence that expression of these proteins is inducible by challenge with agglutinated bacteria, and furthermore that the induced lectins have opsonic properties (Cantacuzene, 1919).

Keywords

Horseshoe Crab Tunicate Species Albumin Gland Acorn Barnacle Snail Helix Pomatia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, H., Pohl, J., Fink, N.E., Strobel, F., and G.R. Vasta The primary structure and carbohydrate specificity of a beta-galactosyl-binding lectin from toad (Bufo arenarum Hensel) ovary reveal closer similarities to the mammalian galectin-1 than to the galectin from the clawed frog Xenopus laevis, J. Biot. Chem., 1996, 271, 33083–33094.CrossRefGoogle Scholar
  2. Al-Sharif, W.Z., J.O. Sunyer, J.D. Lambris, and L.C. Smith Sea urchin coelomocytes specifically express a homologue of the complement component C3. J. Immunol., 1998, 160, 2983–2997.PubMedGoogle Scholar
  3. Alsenz, J., D. Avila, H.P. Huemer, I. Esparza, J.D. Becherer, T. Kinoshita, Y. Wang, S. Oppermann, and J.D. Lambris Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sies, concanavalin A binding sites and thiolester bond in the C3 from different species. Dev Comp. Immun!., 1992, 16, 63–76.CrossRefGoogle Scholar
  4. Avni, O., Z. Pur, E. Yefenof, and M. Baniyash Complement receptor 3 of macrophages is associated with galectin-I-like protein. J. Immunol., 1998, 160, 6151–6158.PubMedGoogle Scholar
  5. Azumi K., Ozeki S., Yokosawa H, and S. Ishii A novel lipopolysaccharide-binding hemagglutinin isolated from hemocytes of the solitary ascidian, Halocynthia roretzi: it can agglutinate bacteria. Dev Comp Immunol. 1991 Winter;15(1–2):9–16.PubMedCrossRefGoogle Scholar
  6. Baish, M.A., R.L. Lohr, and S. Bartl Molecular evidence for complement and alpha 2-macroglobulin family members in the colonial ascidian. Botryllus schlosseri. Dev. Comp. Immunol., 1997, 21, 147.CrossRefGoogle Scholar
  7. Ballarin L., Tonello C., Guidolin L., and A. Sabbadin Purification and characterization of ahumoral opsonin, with specificity for D-galactose, in the colonial ascidian Botryllus schlosseri.. Comp Biochem Physiol B Biochem Mol Biol. 1999 May;123(1): 115–23.CrossRefGoogle Scholar
  8. Barondes, S.H., D.N.W. Cooper, M.A. Gitt, and H. Leffler Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem., 1994, 294, 20807–20810.Google Scholar
  9. Belogortseva N., Molchanova V., Glazunov V., Evtushenko E., and P. Luk’yanov N-Acetyl-D-glucosaminespecific lectin from the ascidian Didemnum ternatanum. Biochim Biophys Acta. 1998 Apr 10;1380(2):249–56.CrossRefGoogle Scholar
  10. Camus, M.L. Recherches experimentales sur une agglutinine produite par la glande dc l’albumen chez l’ Helix pomatia. C.R. Acad. Sci., 1899, 129, 233.Google Scholar
  11. Cantacuzene, J. Sur certains anticorps naturels observes chez Eupagurus prideauxii. C.R. Soc. Biol., 1912, 73, 663.Google Scholar
  12. Chen C, Rowley AF, Newton RP, and N.A. Ratcliffe Identification, purification and properties of a beta1,3-glucan-specific lectin from the serum of the cockroach, Blaberus discoidalis which is implicated in immune defence reactions. Comp Biochem Physiol B Biochem Mol Biol. 1999 Mar;I22(3):309–19.CrossRefGoogle Scholar
  13. Drickamer, K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature, 1992, 360, 183–186.PubMedCrossRefGoogle Scholar
  14. Ezekowitz RA, Williams DJ, Koziel H, Armstrong MY, Warner A, Richards FF, and RM Rose Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature. 1991 May 9;351(6322):1558.CrossRefGoogle Scholar
  15. Fujita Y., Kurata S., Homma K., and S. Natori A novel lectin from Sarcophaga. Its purification, characterization, and cDNA cloning. JBiol Chem. 1998 Apr 17;273(16):9667–72.CrossRefGoogle Scholar
  16. Gadjeva, M., A.W. Dodds, A. Taniguchi-Sidle, A.C. Willis, D.E. Isenman, and S.K.A. Law The covalent binding reaction of complement component C3. J. Immunol., 1998, 161, 985–990.PubMedGoogle Scholar
  17. Giga Y, Ikai A, and K. Takahashi The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins. JBiol Chem. 1987 May 5;262(13):6197–203.Google Scholar
  18. Hatakeyama T., Kohzaki H., Nagatomo H., Yamasaki N. Purification and characterization of four Cat+-dependent lectins from the marine invertebrate, Cucumaria echinata. J. Biochem., 1994, 116, 209–214.Google Scholar
  19. Hayat U, Reddy GP, Bush CA, Johnson JA, Wright AC, and JG, Jr, Morris Capsular types of Vibrio vulnfiicus: an analysis of strains from clinical and environmental sources. JInfect Dis. 1993 Sep;168(3):758–62.CrossRefGoogle Scholar
  20. Haq S Kubo T, Kurata S, Kobayashi A, and S Natori Purification, characterization, and eDNA cloning of a galactose-specific C-type lectin from Drosophila melanogaster. JBiol Chem. 1996 Aug 16;271(33):202–138.Google Scholar
  21. Himeshima T., Hatakeyama T., and Yamasaki N. Amino acid sequence of a lectin from the sea cucumber, Stichopus japonicus, and its structural relationship to the C-type animal lectin family. J. Biochem., 1994, 115,689–692.PubMedGoogle Scholar
  22. Hirabayashi, J., ed. Recent topics on galectins.Trends Glycosci. Glycotechnol. Vol. 9. 1997. 1–180.CrossRefGoogle Scholar
  23. Jackson AD, Smith VJ, and CM Peddie In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Dev Comp Immunol. 1993 Mar-Apr;17(2):97–108.PubMedCrossRefGoogle Scholar
  24. Ji, X., K. Azumi, M. Sasaki, and M. Nonaka Ancient origin of the complement lectin pathway revealed by molecular cloning ofmannan binding protein-associated serine protease from a urochordate, the Japanese ascidian, Halocynthia roretzi. Proc. NatL Acad. Sci. USA, 1997, 94, 6340–6345.CrossRefGoogle Scholar
  25. Laursen, S.B., T.S. Dalgaard, S. Thiel, B.L. Lim, T.V. Jensen, H.R. Juul-Madsen, A. Takahashi, T. Hamana, M. Kawakami, and J.C. Jensenius Cloning and sequencing of a eDNA encoding chicken marman-binding lectin (MBL) and comparison with mammalian analogues. Immunology, 1998, 93, 421–430.PubMedCrossRefGoogle Scholar
  26. Magor KE, and G.R. Vasta Ancestral immunity comes of age. Immunol Today. 1998 Feb;19(2):54–6.PubMedCrossRefGoogle Scholar
  27. Matsushita, M. and T. Fujita Activation of the classical complement pathway by mannose-binding protein in association with a novel Cls-like serine protease. J. Exp. Med., 1992, 176, 1497–1502.PubMedCrossRefGoogle Scholar
  28. Mavroidis, M., J.O. Sunyer, and J.D. Lambris Isolation, primary structure, and evolution of the third component of chicken complement and evidence for a new member of the a2-macroglobulin family. J. Immunol., 1995, 154, 2164–2174.PubMedGoogle Scholar
  29. Muramoto K, and H Kamiya The amino-acid sequence of multiple lectins of the acorn barnacle Megabalanus rosa and its homology with animal lectins. Biochim Biophys Acta. 1990 May 31;1039(1):42–51.PubMedCrossRefGoogle Scholar
  30. Prokop, O., G. Uhlenbruck, and W. Kohler A “new” human blood group receptor Abel tested with saline extracts from Helix hortensis (garden snail). J. Forensic Med., 1965, 12, 108.PubMedGoogle Scholar
  31. Schweinle JE, Ezekowitz RA, Tenner M, Kuhlman M, and KA Joiner Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannoserich isolate of Salmonella. J Clin Invest. 1989 Dec;84(6):1821–9.CrossRefGoogle Scholar
  32. Sugumaran M. Molecular mechanisms for mammalian melanogenesis. Comparison with insect cuticular sclerotization. FEBS Lett. 1991 Dec 16;295(1–3):233–9.PubMedCrossRefGoogle Scholar
  33. Sumiya, M., M. Super, P. Tahona, R.J. Livinsky, T. Arai, M.W. Turner, and J.A. Summerfield Molecular basis of opsonic defect in immunodeficient children. Lancet, 1991, 337, 1569–1570.PubMedCrossRefGoogle Scholar
  34. Sunyer, J.O., L. Tort, and J.D. Lambris Diversity of the third form of complement, C3, in fish: functional characterization of five forms of C3 in the diploid fish Sparus aurata. Biochem J., 1997, 326, 877–881.Google Scholar
  35. Takamatsu N, Takeda T, Kojima M, Heishi M, Muramoto K, Kamiya H, T ShibaAcom barnacle Megabalanus rosa lectin (BRA-3): eDNA cloning, gene structure and seasonal changes of mRNA and protein levels. Gene. 1993 Jun 30;128(2):251–5.PubMedCrossRefGoogle Scholar
  36. Thiel, S., T. Vorup-Jensen, C.M. Stover, W. Schwaeble, S.B. Laursen, K. Paulsen, A.C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K.B.M. Reid, and J.C. Jensenius A second serine protease associated with mannan-binding lectin that activates complement. Nature, 1997, 386, 506–510.PubMedCrossRefGoogle Scholar
  37. Valdimarsson H, Stefansson M, Vikingsdottir T, Arason GJ, Koch C, Thiel S, and J.C. Jensenius Reconstitution of opsonizing activity by infusion of mannan-binding lectin (MBL) to MBL-deficient humans. Scand J Immunol. 1998 Aug;48(2):116–23.PubMedCrossRefGoogle Scholar
  38. Vasta GR, and J.J. Marchalonis Distribution, specificity and macromolecular properties of tunicate plasma lectins. Prog Clin Biol Res. 1984;157:125–41.PubMedGoogle Scholar
  39. Vasta G.R, Marchalonis, J.J., Decker, J.M. Binding and mitogcnic properties of a galactosyl-specific lectin from the tunicate Didemnum candidum for murine thymocytes and splenocytes. J. Immunol., 1986a, 137,3216–3223.Google Scholar
  40. Vasta GR, and J.J. Marchalonis Galactosyl-binding lectins from the tunicate Didemnum candidum. Carbohydrate specificity and characterization of the combining site. JBiol Chem. 1986b Jul 15;261(20):9182–6.Google Scholar
  41. Vasta GR, Hunt JC, Marchalonis JJ, and WW Fish Galactosyl-binding lectins from the tunicate Didcmnum candidum. Purification and physicochemical characterization. JBiol Chem. 1986e Jul 15;261(20):917481.Google Scholar
  42. Vasta, G.R., M.S. Quesenberry, and H. Ahmed, A tunicate fucose-binding lectin is a homologue of the mammalian binding proteins, In New Directions in Invertebrate Immunology, eds. Soderhall, K., Iwanaga, S., Vasta, G.R. SOS Publications, Fair Haven, N.J., 1996, pp. 189–227.Google Scholar
  43. Vasta, G.R., H. Ahmed, L.M. Amzcl, and M.A. Bianchet Galectins from amphibian species: carbohydrate specificity, molecular structure, and evolution. Trends In Glycoscisciences Glycotechnology, 1997, 9, 131–144.CrossRefGoogle Scholar
  44. Vasta, G.R., M.S. Quesenberry, H. Ahmed, and N. O’Leary, C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway, Dev. Comp. Immunol., 1996, 23, 401–420.Google Scholar
  45. Weis, W.I., M.E. Taylor, and K. Drickamer The C-type lectin superfamily in the immune system. Immunol. Rev., 1998, 163, 19–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gerardo R. Vasta
    • 1
  • Michael S. Quesenberry
    • 1
  • Ahmed Hafiz
    • 1
  • Nuala O’Leary
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations