Advertisement

Evolutionary Factors in the Emergence of the Combinatorial Germline Antibody Repertoire

  • John J. Marchalonis
  • Miranda K. Adelman
  • Brian J. Zeitler
  • Paul M. Sarazin
  • P. Michael Jaqua
  • Samuel F. Schluter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)

Abstract

Although life began on earth approximately 3.5 billion years ago, the combinatorial immune response apparently arose in a “big bang” approximately 450 million years ago, [1–4] coincident with the emergence of jawed vertebrates. Preceding this event was the so-called Cambrian explosion occurring approximately 545 million years ago that resulted in the seemingly rapid appearance of virtually all living forms as represented by the fossil record [5, 6]. However, molecular investigations seeking to calibrate evolutionary clocks and analyze phylogenetic relationships indicate that the explosive phases of evolution implied by the fossil record may have been preceded by extended periods of inconspicuous innovation [5, 6] in possible living organisms thatdid not become part of the currently available fossil record. The necessary elements of the combinatorial immune system, immunoglobulins (Igs), T-cell receptors (TCR), MHC products and recombinase activator genes (RAG) are clearly present in even the most primitive jawed vertebrates, the chondrichthian fishes [7–10] which appeared in evolution approximately 450 million years ago. Definitive evidence for these elements is thus far lacking in agnathan vertebrates and in lower deuterostomes. Nevertheless, many primordial elements upon which the combinatorial system is built may well have preceded the split in evolution between protostomes and deuterostomes and their origins may even extrapolate back to ancient times corresponding to the origin and evolution of bacteria.

Keywords

Light Chain Natural Antibody Constant Domain Tiger Shark Nurse Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marchalonis, J.J., and S.F. Schluter. 1990. On the relevance of invertebrate recognition and defense mechanisms to the emergence of the immune response of vertebrates.Scand. J. Immunol.32:13.PubMedCrossRefGoogle Scholar
  2. 2.
    Marchalonis, J.J., and S.F. Schluter. 1998. A stochastic model for the rapid emergence of specific vertebrate immunity incorporating horizontal transfer of systems enabling duplication and combinatorial diversification.J. Theo. Biol.193:429.CrossRefGoogle Scholar
  3. 3.
    Schluter, S.F., R.M. Bernstein, H. Bernstein, and J.J. Marchalonis. 1999. `Big Bang’ emergence of the combinatorial immune system. Dev & Comp. Immunol. 23:107.CrossRefGoogle Scholar
  4. 4.
    Thompson, C.B. 1995. New Insights into V(D)J recombination and its role in the evolution of the immune system.Immunity3:531.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, A., and R. Fortey. 1998. Evolutionary explosions and the phylogenetic fuse.Tree13:151.PubMedGoogle Scholar
  6. 6.
    Wray, G.A., J.S. Levinton, and L.H. Shapiro. 1996. Molecular evidence for deep precambrian divergencies among metazoan phyla.Science274:568.CrossRefGoogle Scholar
  7. 7.
    Marchalonis, J.J., S.F. Schluter, R.M. Bernstein, and A.B. Edmundson. 1998. Phylogenetic emergence and molecular evolution of the immunoglobulin family.Adv. in Immunol.70:417.CrossRefGoogle Scholar
  8. 8.
    Marchalonis, J.J., S.F. Schluter, R.M. Bernstein, and V.S. Hohman. 1998. Antibodies of Sharks: revolution and evolution.Immunol. Rev.166:103.PubMedCrossRefGoogle Scholar
  9. 9.
    Litman, G.W., M.K. Anderson, and J.P. Rast. 1999. Evolution of antigen binding receptors.Annu. Rev. Immunol.17:109.PubMedCrossRefGoogle Scholar
  10. 10.
    Du Pasquier, L., and M. Flajnik. 1999. Origin and evolution of the vertebrate immune system. In Fundamental Immunoloty, vol. 4th Edition. Raven Press, New York. 199.Google Scholar
  11. 11.
    Doolittle, W.F. 1999. Phylogenetic Classification and the Universal tree.Science284:2124.PubMedCrossRefGoogle Scholar
  12. 12.
    Agrawal, A., Q.M. Eastman, and D.G. Schatz. 1998. Transposition mediated by RAGI and RAG2 and its implications for the evolution of the immune system.Nature394:744.PubMedCrossRefGoogle Scholar
  13. 13.
    Hiom, K., M. Melek, and M. Gellert. 1998. DNA transposition by the RAGI and RAG2 proteins: a possible source of oncogenic translocations.Cell94:463.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams, A.F., and A.N. Barclay. 1988. The immunoglobulin superfamily - domains for cell surface recognition.Ann.Rev. Immunol.6:381.CrossRefGoogle Scholar
  15. 15.
    Bork, P., L. Holm, and C. Sander. 1994. The Immunoglobulin Fold. Structural classification, sequence patterns and common core.J. Mol. Biol.242:309.PubMedGoogle Scholar
  16. 16.
    Doolittle, R.F. 1995. The multiplicity of domains in proteins.Annu. Rev. Biochem.64:287.PubMedCrossRefGoogle Scholar
  17. 17.
    Holmgren, A., M.J. Kuehn, C.-I. Branden, and S.J. Hultgren. 1992. Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria. EMBO J.:1617.Google Scholar
  18. 18.
    Klein, J. 1997. Homology between immune responses in vertebrates and invertebrates: does it exist? Scand. J. Immunol46:558.PubMedCrossRefGoogle Scholar
  19. 19.
    Hughes, A.L. 1998. Protein phylogenics provide evidence of a radical discontinuity between arthropod and vertebrate immune systems.Immunogenet47:283.CrossRefGoogle Scholar
  20. 20.
    Klein, J. 1989. Are invertebrates capable of anticipatory immune responses?Scand. J. Immunol.29:499.PubMedCrossRefGoogle Scholar
  21. 21.
    Lambris, J.D., K.B.M. Reid, and J.E. Volanakis. 1999. The Evolution, structure, biology and pathophysiology of complement.Immunol. Today20:207.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, L.C., C.-S. Shill, and S.G. Dachenhausen. 1998. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system../.Immunol.161:6784.Google Scholar
  23. 23.
    Armstrong, P.B., W.F. Mangel, J.S. Wall, J.F. Hainfield, K.E. Van Holde, A. Ikai, and J.P. Quigley. 1991. Structure of a2-macroglobulin from the arthropodLimulus polyphemus. J. Biol. Chem.266:2526.Google Scholar
  24. 24.
    Hoffman, J.A., F.C. Kafatos, C.A.J. Janeway, and R.A.B. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity.Science284:1313.CrossRefGoogle Scholar
  25. 25.
    Fearon, D.T., and R.M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response.Science272:50.PubMedCrossRefGoogle Scholar
  26. 26.
    Medzhitov, R., and C.A. Janeway. 1997. Innate Immunity: The virtues of a nonclonal system of recognition.Cell91:295.PubMedCrossRefGoogle Scholar
  27. 27.
    Lieber, C.S. 1997. Cytochrome P-4502E1: Its physiological and pathological role.Physiol. Revs77:517.Google Scholar
  28. 28.
    Payne, C.M., C. Crowley, D. Washo-Stutltz, M. Briehl, H. Bernstein, C. Bernstein, S. Beard, H. Holubec, and J. Wameke. 1998. The stress-response protein poly(ADP-ribose) polymerase and NKkB oritect against bile salt-induced apoptosis.Cell Death & Different.5:623.CrossRefGoogle Scholar
  29. 29.
    Zapata, A., C.F. Ardavin, R.P. Gomariz, and J. Leceta. 1981. Plasma cells of the amniocoete ofPetromyzon marinus. Cell liiss. Res.221:203.CrossRefGoogle Scholar
  30. 30.
    Marchalonis, J.J., and G.M. Edelman. 1968. Phylogenetic origins of antibody structure. III. Immunoglobulins from the sea lampreyPetromyzon marinas. J. Exp. Med.127:891.CrossRefGoogle Scholar
  31. 31.
    Raison, R.L., and W.H. Hildemann. 1984. Immunoglobulin-bearing blood leucocytes in the Pacific hagfish.Dev. Comp. Immunol.8:99.PubMedCrossRefGoogle Scholar
  32. 32.
    Vamer, J., P. Neame, and G.W. Litman. 1991. A serum heterodimer from hagfish(Eptatretus stoutii)exhibits structural similarity and partial sequence homology with immunoglobulin.Proc. Natl. Acad. Sci. USA88:1746.CrossRefGoogle Scholar
  33. 33.
    Kay, M.M.B., C. Cover, S.F. Schluter, R.M. Bernstein, and J.J. Marchalonis. 1995. Band 3, the anion transporter, is conserved during evolution: implications fro aging and vertebrate evolution.Cell. & Mol. Biol.41:833.Google Scholar
  34. 34.
    Najakshin, A.M., L.V. Mechetina, B.Y. Alabyev, and A.V. Taranin. 1999. Identification of an IL-8 homolog in lamprey(Lampetra fluviatiles):early evolutionary divergence of chemokines.Eur. J. Immunol.29:375.PubMedCrossRefGoogle Scholar
  35. 35.
    Goodier, J.L., and W.S. Davidson. 1994. Tcl Transposon-like sequences are widely distributed in Salmonids.JMol Biol241:26.CrossRefGoogle Scholar
  36. 36.
    Ivies, Z., P.B. Hackett, R.H. Plasterk, and Z. Izsvak. 1997. Molecular reconstruction ofSleeping BeautyaTcl-liketransposon from fish, and its transposition in human cells.Cell91:501.CrossRefGoogle Scholar
  37. 37.
    Britten, R.J. 1997. Mobile elements inserted in the distant past have taken on important functions.Gene205:177.38.Google Scholar
  38. 38.
    Gaudieri, S., C. Leelayuwat, D.C. Townend, J.K. Kulski, and R.L. Dawkins. 1997. Genomic characterization of the region between HLA-B and TNF: implications for the evolution of multicopy gene families.J. Mol. Evol.44:5147.CrossRefGoogle Scholar
  39. 39.
    Ghaffari, S.H., and C.J. Lobb. 1999. Structure and genomic organization of a second cluster of immunoglobulin heavy chain gene segments in the channel catfish.J. Immunol.162:1519.PubMedGoogle Scholar
  40. 40.
    Marchalonis, J.J., G.R. Vasta, G.W. Warr, and W.C. Barker. 1984. Probing the boundaries of the extended immunoglobulin family of recognition moelcules: Jumping domains, convergences and minigenes.Immunol. Today5:133.CrossRefGoogle Scholar
  41. 41.
    Andersson, E., and T. Matsunaga. 1993. Complete cDNA sequence of a rainbow trout IgM gene and evolution of vertebrate IgM constant domains.Immunogenet38:243.CrossRefGoogle Scholar
  42. 42.
    Kimura, M. 1969. The rate of molecular evolution considered from the standpoint of population genetics.Proc. Natl. Acad. Sci. USA63:1181.PubMedCrossRefGoogle Scholar
  43. 43.
    Ayala, F.J. 1997. Vagaries of the molecular clock.Proc Natl Acad Sci USA94:7776.PubMedCrossRefGoogle Scholar
  44. 44.
    Klein, J. 1998. In an immunological twilight zone.Proc. Natl. Acad. Sci. USA95:11504.PubMedCrossRefGoogle Scholar
  45. 45.
    Papermaster, B.W. 1966. Genetic considerations of immunoglobulin evolution in vertebrates.InPhylogeny of Immunity. R.T. Smith, P.A. Miescher and R.A. Good, editors. University of Florida Press, Gainesville, FL. 118.Google Scholar
  46. 46.
    Makela, O., and G.W. Litman. 1980. Lack of heterogeneity in anti-hapten antibodies of a phylogenetically primitive shark.Nature287:639.PubMedCrossRefGoogle Scholar
  47. 47.
    Clem, L.W., W.E. McLearn, and V. Shankey. 1975. Quantitative and habitative aspects of the antibody library of sharks.Adv. Exp. Med. Biol.64:231.PubMedGoogle Scholar
  48. 48.
    Hinds-Frey, K.R., H. Nishikata, R.T. Litman, and G.W. Litman. 1993. Somatic variation precedes extensive diversification of germline sequences combinatorial joining in the evolution of immunoglobulin heavy chain diversity.J Exp Med178:815.PubMedCrossRefGoogle Scholar
  49. 49.
    Diaz, M., J. Velez, M. Singh, J. Cerny, and M.F. Flajnik. 1999. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.Intl. Immunol.11:825.CrossRefGoogle Scholar
  50. 50.
    Hinds, K.R., and G.W. Litman. 1986. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution.Nature (Ldn)320:546.CrossRefGoogle Scholar
  51. 51.
    Hohman, V.S., D.B. Schuchman, S.F. Schluter, and J.J. Marchalonis. 1993. Genomie clone for sandbar shark I light chain: generation of diversity in the absence of gene rearrangement.Proc Natl Acad Sci USA90:9882.PubMedCrossRefGoogle Scholar
  52. 52.
    Rast, J.P., M.K. Anderson, T. Ota, R.T. Litman, M. Margittal, M.J. Shamblott, and G.W. Litman. 1994. Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny.Immunogenet.40:83.CrossRefGoogle Scholar
  53. 53.
    Harindranath, N., H. Ikematsu, A.L. Notkins, and P. Casali. 1993. Structure of the V. and VLsegments of polyreactive and monoreactive human natural antibodies to HIV-1 andescherchia colibgalactosidase.Int Immunol5:1523.PubMedCrossRefGoogle Scholar
  54. 54.
    Coutinho, A., M.D. Kazatchkine, and S. Avrameas. 1995. Natural autoantibodies.Curr. Opin. in Immunol7:812.CrossRefGoogle Scholar
  55. 55.
    Gonzalez, R., J. Charlemagne, W. Mahana, and S. Avrameas. 1988. Specificity of natural serum antibodies present in phylogenetically distinct fish species.Immunology63:31.PubMedGoogle Scholar
  56. 56.
    Marchalonis, J.J., V.S. Hohman, C. Thomas, and S.F. Schluter. 1993. Antibody production in sharks and humans: a role for natural antibodies.Dev Comp Immunol17:41.PubMedCrossRefGoogle Scholar
  57. 57.
    Rudikoff, S., E.W. Voss, and S. M.M. 1970. Biological and Chemical properties of natural antibodies in the nurse shark.J. Immunol.105, no. 6:1344.PubMedGoogle Scholar
  58. 58.
    Leslie, G.A., and L.W. Clem. 1970. Reactivity of normal shark immunoglobulin with nitrophenyl ligands.J. Immunol.105:1547.PubMedGoogle Scholar
  59. 59.
    Landsteiner, K. 1962. The specificity of Serological Reactions. Dover Publications, Inc., New York.Google Scholar
  60. 60.
    Marchalonis, J.J., A. Garza, W.J. Landsperger, S.F. Schluter, and A.-C. Wang. 1997. Binding of human IgG myeloma proteins to autologous T-cell receptor determinants.Crit. Rev. in Immunol.17:497.Google Scholar
  61. 61.
    Marchalonis, J.J., I. Robey, S.F. Schluter, and D.E. Yocum. 1999. Epitope promiscuity of human monoclonal autoantibodies to T-cell receptor combining site determinants.App. Biochem. & Biotech.submitted.Google Scholar
  62. 62.
    Kramer, A., T. Keitcl, K. Winkler, W. Stocklein, W. Hohne, and J. Schneider-Mergener. 1997. Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody.Cell91:799.PubMedCrossRefGoogle Scholar
  63. 63.
    Keitel, T., A. Kramer, H. Wessner, C. Scholz, J. Schneider-Mergener, and W. Hohne. 1997. Crystallographic analysis of Anti-p24 (HIV-1) monoclonal antibody cross-reactivity and polyspecificity.Cell91:811.PubMedCrossRefGoogle Scholar
  64. 64.
    Velick, S.F., C.W. Parker, and H.N. Eisen. 1960. Excitation energy transfer and the quantitative study of the antibody hapten reaction.Proc. Natl. Acad. Sci. USA46:1470.PubMedCrossRefGoogle Scholar
  65. 65.
    Arkoosh, M.R., and S.L. Kaattari. 1991. Development of immunological memory in rainbow trout(Oncorhynhus mykiss) Ian immunochemical and cellular analysis of the B cell response.Dey. & Comp. Immunol.15:279.CrossRefGoogle Scholar
  66. 66.
    Kay, M.M.B. 1984. Localization of senescent cell antigen on band 3.Proc. Natl. Acad. Sci. USA81:5753.PubMedCrossRefGoogle Scholar
  67. 67.
    Carson, D.A., P.P. Chen, R.I. Fox, T.J. Kipps, F. Jirik, R.D. Goldfien, G. Silverman, V. Radoux, and S. Fong. 1987. Rheumatoid factor and immune networks.Annu. Rev. Immunol5:109.PubMedCrossRefGoogle Scholar
  68. 68.
    Yan, X., S.V. Evans, M.J. Kaminki, S.D. Gillies, R.A. Reisfeld, A.N. Houghton, and P.B. Chapman. 1996. Characterization of an Ig VH idiotope that results in specific homophilic binding and increased avidity for antigen.J. Immunol.157:1582.PubMedGoogle Scholar
  69. 69.
    Bcrgenbrant, S., A. Osterborg, G. Holm, H. Mellstedt, and A.K. Lefvert. 1991. Anti-idiotypic antibodies in patients with monoclonal gammopathies: relation to the tumour load.Brit. J. Haematology78:66.CrossRefGoogle Scholar
  70. 70.
    Marchalonis, J.J., S.F. Schluter, E. Wang, K. Dehghanpisheh, D. Lake, D.E. Yocum, A.B. Edmundson, and J.B. Winfield. 1994. Synthetic autoantigens of immunoglobulins and T-cell receptors: their recognition in aging, infection and autoimmunity.Proc. Soc. Expt. Biol.207:129.Google Scholar
  71. 71.
    Dehghanpisheh, K., and J.J. Marchalonis. 1997. Retrovirally induced mouse anti-TCR monoclonals can synergize thein vitroproliferative T cell response to bacterial superantigens.Scand. J. Immunol.45:645.PubMedCrossRefGoogle Scholar
  72. 72.
    Harnett, W., and M.M. Harnett. 1999. Phosphorylcholine: friend or foc of the immune system?Immunol. Today28:125.CrossRefGoogle Scholar
  73. 73.
    Volanakis, J.E., Y. Xu, and K.J. Macon. 1990. Human C-reactive protein and host defense.InDefense Molecules. J.J.M.a.C.L. Reinisch, editor. Wiley-Liss, Inc., New York. 161.Google Scholar
  74. 74.
    Vasta, G.R., J.J. Marchalonis, and H. Kohler. 1984. Invertebrate recognition protein cross-reacts with an immunoglobulin idiotype.J Exp Med159:1270.PubMedCrossRefGoogle Scholar
  75. 75.
    Briles, D.E., J.L. Claflin, K. Schroer, and C. Formann. 1981. Mouse Igg3 antibodies are highly protective against infection with Streptococcus pneumoniae.Nature294:88.PubMedCrossRefGoogle Scholar
  76. 76.
    Shen, S.Y., R.M. Bernstein, S.F. Schluter, and J.J. Marchalonis. 1996. Heavy chain variable regions in carcharhine sharks: development of a comprehensive model for the evolution of VH domains among the gnathanstomes.Immunol. & Cell. Biol.74:357.CrossRefGoogle Scholar
  77. 77.
    Rast, J.P., C.T. Anmemiya, R.T. Litman, S.J. Strong, and G.W. Litman. 1998. Distinct patterns of IgH structure and organization in a divergent lineage of chondrichthyan fishes.Immunogenet.47:234.CrossRefGoogle Scholar
  78. 78.
    Greenberg, A.S., L. Steiner, M. Kasahara, and M.F. Flajnik. 1993. Isolation of a shark immunoglobulin light chain CDNA clone encoding a protein resembling mammalian k light chains: implications for the evolution of light chains.Immunology90:10603.Google Scholar
  79. 79.
    Greenberg, A.S., D. Avila, M. Hughes, A. Hughes, E.C. McKinney, and Flajnik. 1995. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks.Nature374:168.PubMedCrossRefGoogle Scholar
  80. 80.
    Robey, F.A., T. Tanaka, and T.Y. Liu. 1983. Isolation and characterization of two major serum proteins from the dogfishMustelus canisC-reactive protein and amyloid P component. J. Biol. Chem. 258:3889.PubMedGoogle Scholar
  81. 81.
    Hawke, N.S., J.P. Rast, and G.W. Litman. 1996. Extensive diversity of transcribed TCR-beta in a phylogenetically primitive vertebrate.J Immunol156:2458.PubMedGoogle Scholar
  82. 82.
    Lake, D.F., S.F. Schluter, E. Wang, R.M. Bernstein, A.B. Edmundson, and J.J. Marchalonis. 1994. Autoantibodies to the ab T-cell receptors in human immunodeficiency virus (HIV) infection: dysregulation and mimcry.Proc. Natl. Acad Sci. USA91:10849.PubMedCrossRefGoogle Scholar
  83. 83.
    Sledge, C., L.W. Clem, and L.E. Hood. I974. Antibody structure: amino terminal sequence of nurse shark light and heavy chains.J. Immunol.112:941.Google Scholar
  84. 84.
    Clarke, S.H., J.L. Chaffin, M. Potter, and S. Rudikoff. 1983. Polymorphisminanti-phosphorylcholine antibodies reflecting evolution of immunoglobulin families.J. Exp. Med.157:98.PubMedCrossRefGoogle Scholar
  85. 85.
    Hohman, V.S., S.F. Schluter, and J.J. Marchalonis. 1992. Complete sequence of a CDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains.Proc Natl Acad Sci USA89:276.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John J. Marchalonis
    • 1
  • Miranda K. Adelman
    • 1
  • Brian J. Zeitler
    • 1
  • Paul M. Sarazin
    • 1
  • P. Michael Jaqua
    • 1
  • Samuel F. Schluter
    • 1
  1. 1.Microbiology and Immunology College of MedicineUniversity of ArizonaTucson

Personalised recommendations