Advertisement

Role of Tachylectins in Host Defense of the Japanese Horseshoe Crab Tachypleus Tridentatus

  • S. Kawabata
  • H.G. Beisel
  • R. Huber
  • W. Bode
  • S. Gokudan
  • T. Muta
  • R. Tsuda
  • K. Koori
  • T. Kawahara
  • N. Seki
  • Y. Mizunoe
  • S. N. Wai
  • S. Iwanaga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)

Abstract

Immunity to pathogens is mediated by two general systems, innate and acquired immunity. Acquired immunity is found only in vertebrates and it is the system of B and T lymphocytes, which produces a multitude of specific antigen receptors and antibodies by somatic gene rearrangement. Innate immunity is phylogenetically older than acquired immunity and is present in all multicellular organisms. These proteins pre-exist in hosts, or are rapidly induced within hours of infection. With this immunity polysaccharides or other substances on pathogens are detected through pattern recognition (1,2). The innate immunity of invertebrates is triggered by polysaccharide derivatives, such as lipopolysaccharides (LPS), proteoglycans, and (β-1,3-glucans. Examples are hemolymph coagulation in horseshoe crabs (3–5) and phenoloxidasemediated melanization in crustaceans and insects (6).

Keywords

Horseshoe Crab Hemagglutinating Activity Defense Molecule Acetamide Group Specific Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janeway, C. A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. 54, 1–13 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    Medzhitov, R. and Janeway, C. A. Jr. Innate immunity: The virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    Muta, T. and Iwanaga, S. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8, 41–47 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    Kawabata, S., Muta, T. and Iwanaga., S. Clotting cascade and defense molecules found in hemolymph of horseshoe crab. in New directions in invertebrate immunology (Söderhäll, K., Iwanaga, S. and Vasta, G. R., eds.) SOS Publications, Fair Haven, NJ., 1996, pp. 255–284.Google Scholar
  5. 5.
    Iwanaga, S., Kawabata, S. and Muta, T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem. 123, 1–15 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Söderhäll, K. and Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin. Immunol. 10, 23–28 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    Saito, T., Kawabata, S., Hirata, M. and Iwanaga, S. A novel type of limulus lectin-L6: purification, primary structure and antibacterial activity. J. Biol. Chem. 270, 14493–14499 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    Inamori, K., Saito, T., Iwaki, D., Nagira, T., Iwanaga, S., Arisaka, F. and Kawabata, S. A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. J. Biol. Chem. 274, 3272–3278 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    Saito, T., Hatada, M., Iwanaga, S. and Kawabata, S. A newly identified horseshoe crab lectin with binding specificity to 0-antigen of bacterial lipopolysaccharides. J. Biol. Chem. 272, 30703–30708 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    Okino, N., Kawabata, S., Saito, T., Hirata, M., Takagi, T. and Iwanaga, S. Purification, characterization, and cDNA cloning of a 27-kDa lectin (L 10) from horseshoe crab hemocytes. J. Biol. Chem. 270, 31008–31015 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    Beisel, H.-G., Kawabata, S., Iwanaga, S., Huber, R. and Bode, W. Tachylectin-2: crystal structure of a specific GIcNAc/GacNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J. 18, 2313–2322 (1999).CrossRefGoogle Scholar
  12. 12.
    Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., Mizunoe, Y., Wai, S. N., Iwanaga, S. and Kawabata, S. Horseshoe crab acetyl group-recognizing lectin involved in innate immunity are structurally related to fibrinogen. Proc. Nail. Acad. Sci. USA (1999) in press.Google Scholar
  13. 13.
    Doolittle, R. F. in Of Urfs and Orfs: a primer on how to analyze derived amino acid sequence. University Science Books, Mill Valley, CA, 1987, pp. 10–15.Google Scholar
  14. 14.
    Lu, J. and Le, Y. Ficolins and the fibrinogen-like domain. Immunobiol. 199, 190–199 (1998).CrossRefGoogle Scholar
  15. 15.
    Bergner, A., Oganessyan, V., Muta, T., Iwanaga, S., Typke, D., Huber, R. and Bode, W. Crystal structure of coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J. 15, 6789–6797 (1996).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • S. Kawabata
    • 1
  • H.G. Beisel
    • 2
  • R. Huber
    • 2
  • W. Bode
    • 2
  • S. Gokudan
    • 1
  • T. Muta
    • 1
  • R. Tsuda
    • 1
  • K. Koori
    • 1
  • T. Kawahara
    • 1
  • N. Seki
    • 1
  • Y. Mizunoe
    • 3
  • S. N. Wai
    • 3
  • S. Iwanaga
    • 1
  1. 1.Department of BiologyKyushu University FukuokaJapan
  2. 2.Max-Planck-Institute fur BiochemieMartinsriedGermany
  3. 3.Department of Bacteriology, Graduate School of Medical SciencesKyushu University FukuokaJapan

Personalised recommendations