Advertisement

A Role For Protease Inhibitors in Immunity of Long-Lived Animals

  • Peter B. Armstrong
  • James P. Quigley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)

Abstract

To reproduce successfully, all organisms from bacteria to man must survive the attacks of the myriad of parasites that would otherwise produce fatal episodes of disease and premature death. This is particularly true for long-lived species that require many years to reach reproductive maturity and, presumably, that are required to resist multiple episodes of parasitic infection prior to that happy day. Parasites are species that draw their food resources from the live bodies of a host species and that spend much or all of their life in association with that host species. Typically damage is done to the host by the parasite, resulting in a condition of pathogenesis and disease. Parasites may be unicellular or multicellular, prokaryote, eukaryote, or virus.

Keywords

Horseshoe Crab Trypanosoma Cruzi Porphyromonas Gingivalis Entamoeba Histolytica Thiol Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mekalanos H. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 1992;174:1–7.PubMedGoogle Scholar
  2. 2.
    Lantz MS. Are bacterial proteases important virulence factors? J Periodontal Res 1997;32:126–132.PubMedCrossRefGoogle Scholar
  3. 3.
    Salyers A.A., Whitt D.D. Bacterial Pathogenesis: A Molecular Approach. Washington, D.C. ASM Press, 1994:1–418.Google Scholar
  4. 4.
    Engel LS, Hill JM, Caballero AR, Green LC, O’Callaghan RJ. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 1998;273:16792–16797.PubMedCrossRefGoogle Scholar
  5. 5.
    Engel LS, Hill JM, Moreau JM, Green LC, Hobden JA, O’Callaghan RJ. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest Ophthalmol Vis Sci 1998;39:662–665.PubMedGoogle Scholar
  6. 6.
    Brindley PJ, Gam AA, McKerrow JH, Neva FA. Ss40: the zinc endopeptidase secreted by infective larvae of Strongyloides stercoralis. Exp Parasitol 1995;80:1–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen FE, Gregoret LM, Amiri P, Aldape K, Railey J, McKerrow JH. Arresting tissue invasion of a parasite by protease inhibitors chosen with the aid of computer modeling. Biochemistry 1991;30:11221–11229.Google Scholar
  8. 8.
    Kuramitsu HK. Proteases of Porphyromonas gingivalis: what don’t they do? Oral Microbiol Immunol 1998;13:263–270.PubMedCrossRefGoogle Scholar
  9. 9.
    Molla A, Oda T, Maeda H. Different binding kinetics of Serratia 56K protease with plasma a2-macroglobulin and chicken egg white ovomacroglobulin. Journal of Biochemistry 1987;101:199–205.PubMedGoogle Scholar
  10. 10.
    Maeda H, Molla A, Oda T, Katsuki T. Internalization of serratial protease into cells as an enzyme-inhibitor complex with a2-macroglobulin and regeneration of protease activity and cytotoxicity. J Biol Chem 1987;262:10946–10950.PubMedGoogle Scholar
  11. 11.
    Reed SL, Keene WE, McKerrow JH. Thiol proteinase expression and pathogenicity of Entamoeba histolytica. J Clin Microbiol 1989;27:2772–2777.PubMedGoogle Scholar
  12. 12.
    Reed S, Bouvier J, Pollack AS, Engel JC, Brown M, Hirata K, Que X, Eakin A, Hagblom P, Gillin F. Cloning of a virulence factor of Entamoeba histolytica. Pathogenic strains possess a unique cysteine proteinase gene. J Clin Invest 1993;91:1532–1540.PubMedCrossRefGoogle Scholar
  13. 13.
    Breton CB, Blisnick T, Jouin H, Barale JC, Rabilloud T, Pereira da Silva LH. Plasmodium chabaudi p68 serine protease activity required for merozoite entry into mouse erythrocytes. Proc Nat] Acad Sci U S A 1992;89:9647–9651.CrossRefGoogle Scholar
  14. 14.
    Poon-King R, Barman J, Viteri A, Cu G, Zabriskie JB. Identification of an extracellular plasmin binding protein from nephritogenic streptococci. J Exp Med 1993;178:759–763.PubMedCrossRefGoogle Scholar
  15. 15.
    Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992;258:1004–1007.PubMedCrossRefGoogle Scholar
  16. 16.
    Fuchs H, Wallich R, Simon MM, Kramer MD. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci U S A 1994;91:12594–12598.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 1988;82:1560–1566.PubMedCrossRefGoogle Scholar
  18. 18.
    Francis SE, Sullivan DJ, Jr., Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 1997;51:97–123.PubMedCrossRefGoogle Scholar
  19. 19.
    Wasilewski MM, Lim KC, Phillips J, McKerrow JH. Cysteine protease inhibitors block schistosome hemoglobin degradation in vitro and decrease worm burden and egg production in vivo. Mol Biochem Parasitol 1996;81:179–189.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlsson J, Hotting JF, Sundqvist GK. Degradation of albumin, haemopexin, haptoglobin and transferrin, by black-pigmented Bacteroides species. J Med Microbiol 1984;18:39–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, McKerrow JH. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 1997;89:437–444.PubMedCrossRefGoogle Scholar
  22. 22.
    Chung YB, Kong Y, Joo IJ, Cho SY, Kang SY. Excystment of Paragonimus westermani metacercariae by endogenous cysteine protease. J Parasitol 1995;81:137–142.PubMedCrossRefGoogle Scholar
  23. 23.
    Lustigman S, McKerrow JH, Shah K, Lui J, Huima T, Hough M, Brotman B. Cloning of a cysteine protease required for the molting of Onchocerca volvulus third stage larvae [published erratum appears in J Biol Chem 1997 Feb 14;272(7):4645]. J Biol Chem 1996;271:30181–30189.Google Scholar
  24. 24.
    Meirelles MN, Juliano L, Carmona E, Silva SG, Costa EM, Murta AC, Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/5I) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol 1992;52:175–184.PubMedCrossRefGoogle Scholar
  25. 25.
    Marsh JW, Taylor RK. Identification of the Ybrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol Microbiol 1998;29:1481–1492.PubMedCrossRefGoogle Scholar
  26. 26.
    Khan MM, Shibuya Y, Nakagaki T, Kambara T, Yamamoto T. a2-Macroglobulin as the major defence in acute pseudomonal septic shock in the guinea-pig model. International Journal of Experimental Pathology 1994;75:285–293.PubMedGoogle Scholar
  27. 27.
    Rasmussen M, Muller HP, Bjurck L. Protein GRAB of Streptococcus pyogenes Regulates Proteolysis at the Bacterial Surface by Binding a2-Macroglobulin. J Biol Chem 1999;274:15336–15344.PubMedCrossRefGoogle Scholar
  28. 28.
    Zuo X, Woo PT. Natural anti-proteases in rainbow trout, Oncorhynchus mykiss and brook charr, Salvelinus fonrinalis and the in vitro neutralization of fish a2-macroglobulin by the metalloprotease from the pathogenic hemoflagellate, Cryptobia salmositica. Parasitology 1997;114:375–381.PubMedCrossRefGoogle Scholar
  29. 29.
    Cutler CW, Arnold RR, Schenkein HA. Inhibition of C3 and IgG proteolysis enhances phagocytosis of Porphyromonas gingivalis. J Inununol 1993;151:7016–7029.Google Scholar
  30. 30.
    Schenkein HA, Fletcher HM, Bodnar M, Macrina FL. Increased opsonization of a prtH-defective mutant of Porphyromonas gingivalis W83 is caused by reduced degradation of complement-derived opsonins. J Immunol 1995;154:5331–5337.PubMedGoogle Scholar
  31. 31.
    Reed SL, Keene WE, McKerrow JH, Gigli I. Cleavage of C3 by a neutral cysteine proteinase of Entamoeba histolytica. Journal of Immunology 1989;143:189–195.Google Scholar
  32. 32.
    Scott CF, Whitaker EJ, Hammond BF, Colman RW. Purification and characterization of a potent 70-kDa thiol lysyl-proteinase (Lys-gingivain) from Porphyromonas gingivalis that cleaves kininogens and fibrinogen. J Biol Chem 1993;268:7935–7942.PubMedGoogle Scholar
  33. 33.
    Plant AG. The IgA] proteases of pathogenic bacteria. Annu Rev Microbiol 1983;37:603–622.CrossRefGoogle Scholar
  34. 34.
    Kilian M., Reinholdt J. Interference with IgA defense mechanisms by extracellular bacterial enzymes. In: Easmon C.S.F., Jeljaszewics J, eds. Medical Microbiology. London: Academic Press, 1986:173–208.Google Scholar
  35. 35.
    Maeda H, Yamamoto T. Pathogenic mechanisms induced by microbial proteases in microbial infections. Biol Chem Hoppe Seyler 1996;377:217–226.PubMedGoogle Scholar
  36. 36.
    Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol 1994;2:20–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Leytus SP, Bowles LK, Konisky J, Mangel WF. Activation of plasminogen to plasmin by a protease associated with the outer membrane of Escherichia coll. Proc Natl Acad Sci U S A 1981;78:1485–1489.Google Scholar
  38. 38.
    Sorsa T, Ingman T, Suomalainen K, Haapasalo M, Konttinen YT, Lindy O, Saari H, Uitto VJ. Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collagenases. Infect Immun 1992;60:4491–4495.PubMedGoogle Scholar
  39. 39.
    DeCarlo AA, Grenett HE, Harber GJ, Windsor LJ, Bodden MK, Birkedal-Hansen B, Birkedal-Hansen H. Induction of matrix metalloproteinases and a collagen-degrading phenotype in fibroblasts and epithelial cells by secreted Porphyromonas gingivalis proteinase. J Periodontal Res 1998;33:408–420.PubMedCrossRefGoogle Scholar
  40. 40.
    Gordon VM, Rehemtulla A, Leppla SH. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun 1997;65:3370–3375.PubMedGoogle Scholar
  41. 41.
    Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 1995;63:82–87.PubMedGoogle Scholar
  42. 42.
    Inocencio NM, Moehring JM, Moehring TJ. Furin activates Pseudomonas exotoxinAby specific cleavage in vivo and in vitro. J Biol Chem 1994;269:31831–31835.PubMedGoogle Scholar
  43. 43.
    Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin [see comments]. Nature 1992;359:832–835.PubMedCrossRefGoogle Scholar
  44. 44.
    Montecucco C, Schiavo G. Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Bioehem Sci 1993;18:324–327.CrossRefGoogle Scholar
  45. 45.
    Dunn DL, Simmons RL. Fibrin in peritonitis. III. The mechanism of bacterial trapping by polymerizing fibrin. Surgery 1982;92:513–519.PubMedGoogle Scholar
  46. 46.
    Rotstein OD. Role of fibrin deposition in the pathogenesis of intraabdominal infection. Eur J Clin Microbiol Infect Dis 1992;11:1064–1068.PubMedCrossRefGoogle Scholar
  47. 47.
    Bang F.B. Ontogeny and phylogeny of response to gram-negative endotoxins among the marine invertebrates. In: Cohen E. ed. Biomedical Applications of the Horseshoe Crab (Limulidae). New York, N.Y. Alan R. Liss, 1979:109–123.Google Scholar
  48. 48.
    Cohen D, Lijnen HR. Molecular basis of fibrinolysis, as relevant for thrombolytic therapy. Thromb Haemost 1995;74:167–171.Google Scholar
  49. 49.
    Aikawa M. Fine structure of malaria parasites in the various stages of development. In: Wernsdorfer WH, McGregor I. eds. Malaria: Principles and Practices of Malariology. Edinburgh: Churchill Livingstone, 1988:97–129.Google Scholar
  50. 50.
    Crichton RR, Charloteaux-Wauters M. Iron transport and storage. Eur J Biochem 1987;164:485–506.PubMedCrossRefGoogle Scholar
  51. 51.
    Cutler CW, Kalmar JR, Genco CA. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends Microbiol 1995;3:45–51.PubMedCrossRefGoogle Scholar
  52. 52.
    McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbic)] 1993;47:821–853.CrossRefGoogle Scholar
  53. 53.
    Goguen JD, Hoe NP, Subrahmanyam YV. Proteases and bacterial virulence: a view from the trenches. Infect Agents Dis 1995;4:47–54.PubMedGoogle Scholar
  54. 54.
    Genco CA, Van Dyke T, Amar S. Animal models for Porphyromonas gingivalis-mediated periodontal disease. Trends Microbiol 1998;6:444–449.PubMedCrossRefGoogle Scholar
  55. 55.
    Vitovski S, Rced RC, Sayers JR. Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin Al protease activity compared to colonizing strains. FASEB Journal 1999;13:331–337.PubMedGoogle Scholar
  56. 56.
    Schaller M, Schafer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of oral candidosis and in patient samples from the oral cavity. Mol Microbiol 1998;29:605–615.PubMedCrossRefGoogle Scholar
  57. 57.
    Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 1998;66:5620–5629.PubMedGoogle Scholar
  58. 58.
    Alexander J, Coombs GH, Mottram JC. Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Thl response. J Immunol 1998;161:6794–6801.PubMedGoogle Scholar
  59. 59.
    Engel JC, Doyle PS, Hsieh I, McKerrow JH. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998;188:725–734.PubMedCrossRefGoogle Scholar
  60. 60.
    Pellizzari R, Rossetto O, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 1999;354:259–268.PubMedCrossRefGoogle Scholar
  61. 61.
    Lukomski S, Burns EH, Jr., Wyde PR, Podbielski A, Rurangirwa J, Moore-Poveda DK, Musser JM. Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect Immun 1998;66:771–776.PubMedGoogle Scholar
  62. 62.
    Ullberg M, Kronvall G, Carlsson I, Wiman B. Receptors for human plasminogen on gram-negative bacteria. Infect Immun 1990;58:21–25.PubMedGoogle Scholar
  63. 63.
    Laskowski MJ, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980;49:593–626.PubMedCrossRefGoogle Scholar
  64. 64.
    Enghild JJ, Thogersen IB, Salvesen G, Fey GH, Figler NL, Gonias SL, Pizzo SV a2--Macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 1990;29:10070–10080.PubMedCrossRefGoogle Scholar
  65. 65.
    Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem 1983;52:655–709.PubMedCrossRefGoogle Scholar
  66. 66.
    Sottrup-Jensen L, Sand O, Kristensen L, Fey GH. The a2-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian a2-macroglobulms. J Biol Chem 1989;264:15781–15789.PubMedGoogle Scholar
  67. 67.
    Sottrup-Jensen L, Gliemann J, Van Leuven F. Domain structure of human a2-macroglobulin. Characterization of a receptor-binding domain obtained by digestion with papain. FEBS Lett 1986;205:20–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Holtet TL, Nielsen KL, Etzerodt M, Moestrup SK, Gliemann J, Sottrup-Jensen L, Thogersen HC. Receptor-binding domain of human a2-macroglobulin. Expression, folding and biochemical characterization of a high-affinity recombinant derivative. FEBS Lett 1994;344:242–246.PubMedCrossRefGoogle Scholar
  69. 69.
    Nielsen KL, Holtet TL, Etzerodt M, Moestrup SK, Gliemann J, Sottrup-Jensen L, Thogersen HC. Identification of residues in alpha-macroglobulins important for binding to the a2-macroglobulin receptor/Low density lipoprotein receptor-related protein. J Biol Chem 1996;271:12909–12912.PubMedCrossRefGoogle Scholar
  70. 70.
    Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS. Sequence identity between the a2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 1990;265:17401–17404.PubMedGoogle Scholar
  71. 71.
    Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the a2-macroglobulin receptor. Febs Letter 1990;276:151–155.CrossRefGoogle Scholar
  72. 72.
    Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994;63:601–637.PubMedCrossRefGoogle Scholar
  73. 73.
    Strickland DK, Kounnas MZ, Argraves WS. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J 1995;9:890–898.PubMedGoogle Scholar
  74. 74.
    Quigley JP, Armstrong PB, Gallant P, Rickles FR, Troll W. An endopeptidase inhibitor, similar to vertebrate a2-macroglobulin, present in the plasma of Limulus polyphemus. Biol Bull (Woods Hole) 1982;163:402Google Scholar
  75. 75.
    Quigley JP, Armstrong PB. An endopeptidase inhibitor, similar to mammalian a2-macroglobulin, detected in the hemolymph of an invertebrate, Limulus polyphemus. J Biol Chem 1983;258:7903–7906.PubMedGoogle Scholar
  76. 76.
    Quigley JP, Armstrong PB. A homologue of a2-macroglobulin purified from the hemolymph of the horseshoe crab Limulus polyphemus. J Biol Chcm 1985;260:12715–12719.Google Scholar
  77. 77.
    Ganrot PO. Determination of a2-macroglobulin as trypsin-protein esterase. Clin Chim Acta 1966;14:493501.Google Scholar
  78. 78.
    Armstrong PB, Rossner MT, Quigley JP. An a2-macroglobulin-like activity in the blood of chelicerate and mandibulate arthropods. J Exp Zool 1985;236:1–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Armstrong PB, Quigley JP. Limulus a2-macroglobulin. First evidence in an invertebrate for a protein containing an internal thiol ester bond. Biochem J 1987;248:703–707.PubMedGoogle Scholar
  80. 80.
    Sottrup-Jensen L, Borth W, Hall M, Quigley JP, Armstrong PB. Sequence similarity between a2macroglobulin from the horseshoe crab, Limulus polyphemus, and the proteins of the a2-macroglobulin family from mammals. Comp Bioc B 1990;96:621–625.Google Scholar
  81. 81.
    Ikawi D, Kawabata S-I, Miura Y, Kato A, Armstrong PB, Quigley JP, Nielsen KL, Dolmer K. Molecular cloning of Limulus a2-macroglobulin. Eur J Biochem 1996;242:822–831CrossRefGoogle Scholar
  82. 82.
    Hergenhahn H-G, Soderhall K. a2-Macroglobulin-like activity in plasma of the crayfish, Pacifastacus leniusculus. Comp Biochem Physiol 1985;81B:833–835.Google Scholar
  83. 83.
    Hergenhahn HG, Hall M, Soderhall K. Purification and characterization of an a2-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem J 1988;255:801–806.PubMedGoogle Scholar
  84. 84.
    Spycher SE, Arya S, Isenman DE, Painter RH. A functional, thioester-containing a2-macroglobulin homologue isolated from the hemolymph of the American lobster (Homarus americanus). J Biol Chem 1987;262:14606–14611.PubMedGoogle Scholar
  85. 85.
    Stocker W, Breit S, Sottrnp-Jensen L, Zwilling R. a2-Macroglobulin from hemolymph of the freshwater crayfish Astacus astacus. Comp Biochem Physiol [B] 1991;98:501–509.Google Scholar
  86. 86.
    Armstrong PB, Quigley JP. Humoral immunity: a2-macroglobulin activity in the plasma of mollusks. Veliger 1992;35:161–164.Google Scholar
  87. 87.
    Thogersen IB, Salvesen G, Brpcato, FH Pizzo SV, Etghill JJ. Purification and characterization of an a -macrog obulin proteinase inhibitor from the mollusc Octopus vu garis. Biochem J 1992;285:521–527.PubMedGoogle Scholar
  88. 88.
    Bender RC, Fryer SE, Bayne CJ. Proteinase inhibitory activity in the plasma of a mollusc - Evidence for the presence of a2-macroglobulin in Biomphalaria glabrata. Comp Bioc B 1992;102:821–824.Google Scholar
  89. 89.
    Bender RC, Bayne CJ. Purification and characterization of a tetrameric a2-macroglobulin protease inhibitor from the gastropod mollusc, Biomphalaria glabrata. Biochem J 1996;316:893–900.PubMedGoogle Scholar
  90. 90.
    Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes spedifically express a homologue of the complement component C3. J Immunol 1998;160:2983–2997.PubMedGoogle Scholar
  91. 91.
    Baish MA, Lohr RL, Bartl S. Molecular evidence for complement and a2-macroglobulin family members in the colonial ascidian, Botryllus schlosseri. Dev Comp Immunol 1997;21:147CrossRefGoogle Scholar
  92. 92.
    Dolma K, Husted LB, Armstrong PB, Sottrup-Jensen L. Localisation of the major reactive lysine residue involved in the self-crosslinking of proteinase-activated Limulus a2-macroglobulin. FEBS Lett 1996;393:37–40.CrossRefGoogle Scholar
  93. 93.
    Melchior R, Quigley JP, Armstrong PB. a2-Macroglobulin-mediated clearance of proteases from the plasma of the American horseshoe crab, Limulus polyphemus. J Biol Chem 1995;270:13496–13502.PubMedCrossRefGoogle Scholar
  94. 94.
    Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lonblad PB, Magnusson S, Petersen TE. Primary structure of human a2-macroglobulin. V. The complete structure. J Biol Chem 1984;259:8318–8327.PubMedGoogle Scholar
  95. 95.
    Kan CC, Solomon E, Belt KT, Chain AC, Hioms LR, Fey G. Nucleotide sequence of cDNA encoding human a2-macroglobulin and assignment of the chromosomal locus. Proc Natl Acad Sci U S A 1985;82:2282–2286.PubMedCrossRefGoogle Scholar
  96. 96.
    Gehring MR, Shiels BR, Northemann W, de Bruijn MH, Kan CC, Chain AC, Noonan DJ, Fey GH. Sequence of rat liver a2-macroglobulin and acute phase control of its messenger RNA. J Biol Chem 1987;262:446–454.PubMedGoogle Scholar
  97. 97.
    Van Leuven F, Torrekens S, Overbergh L, Lorent K, De Strooper B, Van den Berghe H. The primary sequence and the subunit structure of mouse a2-macroglobulin, deduced from protein sequencing of the isolated subunits and from molecular cloning of the cDNA. Eur J Biochem 1992;210:319–327.PubMedCrossRefGoogle Scholar
  98. 98.
    Hall M, Soderhall K, Sottrup-Jensen L. Amino acid sequence around the thiolester of a2-macroglobulin from plasma of the crayfish, Pacifastacus leniusculas. Febs Letter 1989;254:111–114.CrossRefGoogle Scholar
  99. 99.
    Starkey PM, Barrett AJ. a2-Macroglobulin, a physiological regulator of proteinase activity. In: Barrett AJ, ed. Proteinases in Mammalian Cells and Tissues. Amsterdam: Elsevier/North Holland Biomedical Press, 1977:663–696.Google Scholar
  100. 100.
    Barrett AJ, Starkey PM. The interaction of a2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 1973;133:709–724.PubMedGoogle Scholar
  101. 101.
    Barrett AJ, Brown MA, Sayers CA. The electrophoretically ‘slow’ and ‘fast’ forms of the a2macroglobulin molecule. Biochem J 1979;181:401–418.PubMedGoogle Scholar
  102. 102.
    Armstrong PB, Mangel WF, Wall JS, Hainfield JF, Van Holde KE, Ikai A, Quigley JP. Structure of a2macroglobulin from the arthropod Limulus polyphemus. J Biol Chem 1991;266:2526–2530.PubMedGoogle Scholar
  103. 103.
    Quigley JP, Ikai A, Arakawa H, Osada T, Armstrong PB. Reaction ofproteinases with a2-macroglobulin from the American horseshoe crab, Limulus. J Biel Chem 1991;266:19426–19431.Google Scholar
  104. 104.
    Sottrup-Jensen L, Petersen TE, Magnusson S. A thiol-ester in a2-macroglobulin cleaved during proteinase complex formation. FEBS Lett 1980;121:275–279.PubMedCrossRefGoogle Scholar
  105. 105.
    Sottrup-Jensen L, Hansen HF, Pedersen HS, Kristensen L. Localization of r-Lysyl-gamma-glutamyl cross-links in 5 human a2-macroglobulin-proteinase complexes - Nature of the high molecular weight cross-linked products. J Biol Chem 1990;265:17727–17737.PubMedGoogle Scholar
  106. 106.
    Jacobsen L, Sottrup-Jensen L. Localization of e-lysyl-gamma-glutamyl cross-links in a2macroglobulin-plasmin complex. Biochemistry 1993;32:120–126.PubMedCrossRefGoogle Scholar
  107. 107.
    Van Leuven F, Marynen P, Sottrup-Jensen L, Cassiman JJ, Van den Berghe H. The receptor-binding domain of human a2-macroglobulin. Isolation after limited proteolysis with a bacterial proteinase. J Biol Chem 1986;261:11369–11373.PubMedGoogle Scholar
  108. 108.
    Enghild JJ, Thogersen IB, Roche PA, Pizzo SV. A conserved region in a2-macroglobulins participates in binding to the mammalian a-macroglobulin receptor. Biochemistry 1989;28:1406–1412.PubMedCrossRefGoogle Scholar
  109. 109.
    Davidsen O, Christensen EI, Gliemann J. The plasma clearance of human a2-macroglobulin-trypsin complex in the rat is mainly accounted for by uptake into hepatocytes. Biochim Biophys Acta 1985;846:85–92.PubMedCrossRefGoogle Scholar
  110. 110.
    Feldman SR, Rosenberg MR, Ney KA, Michalopoulos G, Pizzo SV. Binding of a2-macroglobulin to hepatocytes: mechanism of in vivo clearance. Biochem Biophys Res Commun 1985;128:795–802.PubMedCrossRefGoogle Scholar
  111. 111.
    Yochem J, Greenwald I. A gene for a low density lipoprotein receptor-related protein in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 1993;90:4572–4576.PubMedCrossRefGoogle Scholar
  112. 112.
    Yochem J, Tuck S, Greenwald I, Han M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 1999;126:597–606.PubMedGoogle Scholar
  113. 113.
    Bu G. Receptor-associated protein: a specialized chaperone and antogonist for members of the LDL receptor gene family. Curr Opin Lipidol 1998;9:149–155.PubMedCrossRefGoogle Scholar
  114. 114.
    Aimes RT, Quigley JP, Swarnakar S, Strickland D, Armstrong PB. Preliminary investigations on the scavenger receptors of the amebocyte of the American horseshoe crab, Limulus polyphemus. Biol Bull (Woods Hole) 1995;189:225–226.Google Scholar
  115. 115.
    Horvat RT, Clabaugh M, Duval-Jobe C, Parmely MJ. Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of a2-macroglobulin. Infection and Immunity 1989;57:1668–1674.PubMedGoogle Scholar
  116. 116.
    Giroux E, Vargaftig BB. Clostridiopeptidase B inhibition by plasma macroglobulins and microbial antiproteases. Biochimica Biophysica Acta 1978;525:429–437.CrossRefGoogle Scholar
  117. 117.
    Fryer SE, Bender RC, Bayne CJ. Inhibition of cysteine proteinase from Schsitosoma mansoni larvae by a2-macroglobulin from the plasma of Biomphalaria glabrata. J Parasitol 1996;82:343–347.PubMedCrossRefGoogle Scholar
  118. 118.
    Srimal S, Armstrong PB. Interaction of immune defense systems of Limulus polyphemus with an extracorporeal protease secreted by the principal ectoparasite of Limulus, the triclad turbellarid worm, Bdelloura candida. Indian J Biol 1996;34:1081–1084.Google Scholar
  119. 119.
    Khan MM, Shibuya Y, Kambara T, Yamamoto T. Role of a2-macroglobulin and bacterial elastase in guinea-pig pseudomonal septic shock. International Journal of Experimental Pathology 1995;76:2128.Google Scholar
  120. 120.
    Neely AN, Law EJ, Holder IA. Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes. Infection and Immunity 1986;52:200–204.PubMedGoogle Scholar
  121. 121.
    Miyagawa S, Kamata R, Matsumoto K, Okamura R, Maeda H. Therapeutic intervention with chicken egg white ovomacroglobulin and a new quinolone on experimental Pseudomonas keratitis. Graefes Arch Clin Exp Ophthalmol 1994;232:488–493.PubMedCrossRefGoogle Scholar
  122. 122.
    Chu CT, Pizzo SV. Receptor-mediated antigen delivery into macrophages. Complexing antigen to a2-macroglobulin enhances presentation to T cells. J Immunol 1993;150:48–58.PubMedGoogle Scholar
  123. 123.
    Morrot A, Strickland DK, Higuchi Md, L, Reis M, Pedrosa R, Scharfstein J. Human T cell responses against the major cysteine proteinase (cruzipain) of Trypanosoma cruzi: role of the multifunctional a2-macroglobulin receptor in antigen presentation by monocytes. Int Immunol 1997;9:825–834.PubMedCrossRefGoogle Scholar
  124. 124.
    Coutinho C.M.L.M., van Leuven F., Araujo-Jorge T.C. Detection of a-macroglobulin in the heart of mice infected with Trypanosoma cruzi. Parasitol Res 1999;85:249–255.PubMedCrossRefGoogle Scholar
  125. 125.
    Herz J, Clouthier DE, Hammer RE. LDL receptor-related protein internalizes and degrades uPA-PAI1 complexes and is essential for embryo implantation [published erratum appears in Cell 1993 May 7;73(3):428]. Cell 1992;71:411–421.PubMedCrossRefGoogle Scholar
  126. 126.
    Umans L, Serneels L, Overbergh L, Lorent K, Van Leuven F, Van den Berghe H. Targeted inactivation of the mouse a2-macroglobulin gene. J Biol Chem 1995;270:19778–19785.PubMedCrossRefGoogle Scholar
  127. 127.
    Overbergh L, Hilliker C, Lorent K, Van Leuven F, Van den Berghe H. Identification of four genes coding for isoforms of murinoglogulin, the monomeric form of mouse a2-macroglobulin; characterization of the exons coding for the bait region. Genomics 1994;22:530–539.PubMedCrossRefGoogle Scholar
  128. 128.
    Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB. The a2macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 1992;267:12420–12423.PubMedGoogle Scholar
  129. 129.
    FitzGerald DJ, Fryling CM, Zdanovsky A, Saelinger CB, Kounnas M, Winkles JA, Strickland D, Leppla S. Pseudomonas exotoxin-mediated selection yields cells with altered expression of low-density lipoprotein receptor-related protein [published erratum appears in J Cell Biol 1995 Aug;130(4): 1015]. J Cell Biol 1995;129:1533–1541.Google Scholar
  130. 130.
    Gu M, Gordon VM, FitzGerald DJ, Leppla SH. Furin regulates both the activation of Pseudomonas exotoxin A and the Quantity of the toxin receptor expressed on target cells. Infect Immun 1996;64:524527.Google Scholar
  131. 131.
    Fitzgerald D, Pastan I. Pseudomonas exotoxin and recombinant immunotoxins derived from it. Ann N Y Acad Sei 1993;685:740–745.CrossRefGoogle Scholar
  132. 132.
    Hughes AL. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics 1998;47:283–296.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Peter B. Armstrong
    • 1
    • 2
  • James P. Quigley
    • 3
    • 4
  1. 1.Department of Molecular and Cellular BiologyUniversity of CaliforniaDavis
  2. 2.Marine Biological LaboratoryWoodsHole
  3. 3.Department of Vascular BiologyScripps Research InstituteLa Jolla
  4. 4.Marine Biological LaboratoryWoods Hole

Personalised recommendations