Form, Function and Phylogenetic Relationships of Mosquito Immune Peptides

  • Carl A. Lowenberger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 484)


Insects represent one of the earth’s most successful groups of organisms, colonizing essentially every niche possible, with the exception of the oceans. One factor contributing to this success in exploiting such diverse ecological niches is their ability to defend themselves against harmful pathogens and parasites (1,2). Insects can mount an extremely effective response against invasion by prokaryotic and eukaryotic pathogens involving both cellular and humoral factors (3,4). These responses may include phagocytosis of bacteria, formation of nodules containing large aggregates of bacteria, the melanotic encapsulation of metazoan parasites (5,6) or the use of potent antimicrobial peptides (7,8).


Antimicrobial Peptide Royal Jelly Antibacterial Peptide Plasmodium Berghei Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowenberger, C. A., Smartt, C. T., Bulet, P., Ferdig, M. T., Severson, D. W., Hoffmann, J. A., and Christensen, B. M. (1999) Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect. Mol. Biol. 8, 107–118CrossRefGoogle Scholar
  2. 2.
    Lowenberger, C. A., Kamal, S., Chiles, J., Paskewitz, S., Bulet, P., Hoffmann, J. A., and Christensen, B. M. (1999) Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp. Parasitol. 91, 59–69PubMedCrossRefGoogle Scholar
  3. 3.
    Dunn, P. E. (1986) Biochemical aspects of insect immunology. Annu. Rev. Entomol. 31, 321–329CrossRefGoogle Scholar
  4. 4.
    Lackie, A. M., and Vasta, G. R. (1988) The role of galactosyl-binding lectin in the cellular immune response of the cockroach Periplaneta americana (Dictyoptera). Immunology 64, 353–357PubMedGoogle Scholar
  5. 5.
    Christensen, B. M., and Forton, K. F. (1986) Hemocyte-mediated metanization of microfilariae in Aedes aegypti. J. Parasitol. 72, 220–225CrossRefGoogle Scholar
  6. 6.
    Li, J. Y., and Christensen, B. M. (1990) Immune competence of Aedes trivittatus hemocytes as assessed by lectin binding. J. Parasitol 76, 276–278PubMedCrossRefGoogle Scholar
  7. 7.
    Bulet, P., Hetru, C., Dimarcq, J. L., and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dey. Comp. Immunol. 23, 329–344CrossRefGoogle Scholar
  8. 8.
    Hctru C., H., D., and Bulet, P. (1998) Antimicrobial Peptides from Insects in Molecular Mechanisms of Immune Responses in Insects (Brey, P. T. and Hultmark, D. eds), pp. 40–66, Chapman and Hall, LondonGoogle Scholar
  9. 9.
    Boman, H. G. (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand. J Immunol. 48, 15–25PubMedCrossRefGoogle Scholar
  10. 10.
    Boman, H. G. (1991) Antibacterial peptides: key components needed in immunity. Cell 65, 205–207PubMedCrossRefGoogle Scholar
  11. 11.
    Zasloff, M. (1992) Antibiotic peptides as mediators of innate immunity. Cur. Opin. Immunol. 4, 3–7CrossRefGoogle Scholar
  12. 12.
    Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev Immunul. 13, 6162Google Scholar
  13. 13.
    Ganz, T., and Weiss, J. (1997) Antimicrobial peptides of phagocytes and epithelia. Semin. Hematol. 34, 343–354PubMedGoogle Scholar
  14. 14.
    Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osbom, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108, 1353–1358Google Scholar
  15. 15.
    Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., and Boman, H. G. (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248PubMedCrossRefGoogle Scholar
  16. 16.
    Cociancich, S., Bulet, P., Hetru, C., and Hoffmann, J. A. (1994) The inducible antibacterial peptides of insects. Parasitology Today 10, 132–139PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffmann, J. A., Reachhart, J. M., and Helm, C. (1996) Innate immunity in higher insects. Curt: Opin. Immunol. 8, 8–13CrossRefGoogle Scholar
  18. 18.
    Hetru, C., Bulet, P., Cociancich, S., Dimarcq, J. L., Hoffmann, D., and Hoffmann, J. A. (1994) Antibacterial Peptides/Polypeptides in the insect host defense: a comparison with vertebrate antibacterial peptides/polypeptides in Phylogenetic perspectives in immunity: the insect host defense (Hofmann, J. A., Janeway, C. A., and Natori, S., eds), pp. 43–66, R.G. Landes, AustinGoogle Scholar
  19. 19.
    Matsuyama, K., and Natori, S. (1988) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263, 17117–17121Google Scholar
  20. 20.
    Matsuyama, K., and Natori, S. (1988) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J. Biol. Chem. 263, 17112–17116Google Scholar
  21. 21.
    WHO. (1999) Disease Statistics. The World Health Report, WHO, GenevaGoogle Scholar
  22. 22.
    Chalk, R., Albuquerque, C. M., Ham, P. J., and Townson, H. (1995) Full sequence and characterization of two insect defensins: immune peptides from the mosquito Aedes aegypti. Proc. R. Soc. Lond. B 261, 217–221CrossRefGoogle Scholar
  23. 23.
    Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B. M., and Hoffmann, J. A. (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect. Biochem. Mol. Biol. 25, 867–873CrossRefGoogle Scholar
  24. 24.
    Cho, W. L., Fu, T. F., Chiou, J. Y., and Chen, C. C. (1997) Molecular characterization of a defensin gene from the mosquito, Aedes aegypti. Insect. Biochem. Mol. Biol. 27, 351–358CrossRefGoogle Scholar
  25. 25.
    Richman, A. M., Bulet, P., Hetru, C., Barillas-Mury, C., Hoffmann, J. A., and Kafalos, F. C. (1996) Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect. Mol. Biol. 5, 203–210PubMedCrossRefGoogle Scholar
  26. 26.
    Lowenberger, C., Charlet, M., Vizioli, J., Kamal, S., Richman, A., Christensen, B. M., and Bulet, P. (1999) Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 274, 20092–20097CrossRefGoogle Scholar
  27. 27.
    Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Muller, H.-M., Dimopoulos, G., Hoffmann, J. A., Kafatos, F. C., and Richman, A. (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. In PressGoogle Scholar
  28. 28.
    Sun, D., Eccleston, E. D., and Fallon, A. M. (1998) Peptide sequence of an antibiotic cecropin from the vector mosquito, Aedes albopictus. Biochem. Biophys. Res. Commun. 249, 410–415CrossRefGoogle Scholar
  29. 29.
    Yoshiga, T., Hernandez, V. P., Fallon, A. M., and Law, J. H. (1997) Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc. Natl. Acad. Sci. USA 94, 12337–12342PubMedCrossRefGoogle Scholar
  30. 30.
    Dimarcq, J. L., Zachary, D., Hoffmann, J. A., Hoffmann, D., and Reichhart, J. M. (1990) Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. Embo J. 9, 2507–2515Google Scholar
  31. 31.
    Beemtsen, B. T., Severson, D. W., and Christensen, B. M. (1994) Aedes aegypti: characterization of a hemolymph polypeptide expressed during melanotic encapsulation of filarial worms. Exp. Parasitol. 79, 312–321CrossRefGoogle Scholar
  32. 32.
    Dimopoulos, G., Seeley, D., Wolf, A., and Kafatos, F. C. (1998) Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. Embo J. 17, 6115–6123PubMedCrossRefGoogle Scholar
  33. 33.
    Brey, P. T., Lee, W. J., Yamakawa, M., Koizumi, Y., Perrot, S., Francois, M., and Ashida, M. (1993) Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sci. USA 90, 6275–6279PubMedCrossRefGoogle Scholar
  34. 34.
    Lambert, J., Keppi, E., Dimarcq, J. L., Wicker, C., Reichhart, J. M., Dunbar, B., Lepage, P., Van Dorsselaer, A., Hoffmann, J., Fothergill, J., and et al. (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. U S A 86, 262–266PubMedCrossRefGoogle Scholar
  35. 35.
    Ganz, T., and Lehrer, R. I. (1995) Dcfcnsins. Pharmacol. Ther. 66, 191–205PubMedCrossRefGoogle Scholar
  36. 36.
    Evans, E. W., Beach, F. G., Moore, K. M., Jackwood, M. W., Glisson, J. R., and Harmon, B. G. (1995) Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THPI, and THP3. Vet. Microbio!. 47, 295–303CrossRefGoogle Scholar
  37. 37.
    Penninckx, I. A., Eggemiont, K., Terras, F. R., Thomma, B. P., De Samblanx, G. W., Buchala, A., Metraux, J. P., Manners, J. M., and Broekaert, W. F. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8,2309–2323PubMedGoogle Scholar
  38. 38.
    Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., and Kobayashi, K. (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 265, 11333–11337PubMedGoogle Scholar
  39. 39.
    Casteels, P., Ampe, C., Jacobs, F., and Tempst, P. (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol. Chem. 268, 7044–7054PubMedGoogle Scholar
  40. 40.
    Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A., Ptak, M., and Voyelle, F. (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3, 435–448PubMedCrossRefGoogle Scholar
  41. 41.
    Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 1521–1523PubMedCrossRefGoogle Scholar
  42. 42.
    Leippe, M. (1999) Antimicrobial and cytolytic polypeptides of amoeboid protozoa—effector molecules of primitive phagocytes. Dey. Comp. Immunol. 23, 267–279CrossRefGoogle Scholar
  43. 43.
    Kato, Y., and Komatsu, S. (1996) ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum. Purification, primary structure, and molecular cloning of cDNA. J. Biol. Chem. 271, 30493–30498PubMedCrossRefGoogle Scholar
  44. 44.
    Cociancich, S., Goyffon, M., Bontems, F., Bulet, P., Bouet, F., Menez, A., and Hoffmann, J. (1993) Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194,17–22PubMedCrossRefGoogle Scholar
  45. 45.
    Ehret-Sabatier, L., Loew, D., Goyffon, M., Fehlbaum, P., Hoffmann, J. A., van Dorsselaer, A., and Bulet, P. (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J. Biol. Chem. 271, 29537–29544PubMedCrossRefGoogle Scholar
  46. 46.
    Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A., and Bulet, P. (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem. 271, 21808–21813CrossRefGoogle Scholar
  47. 47.
    Hubert, F., Noel, T., and Roch, P. (1996) A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur. J Biochem. 240, 302–306PubMedCrossRefGoogle Scholar
  48. 48.
    Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A., and Letellier, L. (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239–19245Google Scholar
  49. 49.
    Richman, A. M., Dimopoulos, G., Seeley, D., and Kafatos, F. C. (1997) Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. Embo J. 16, 6114–6119PubMedCrossRefGoogle Scholar
  50. 50.
    Lee, J. Y., Boman, A., Sun, C. X., Andcrsson, M., Jomvall, H., Mutt, V., and Boman, H. G. (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA 86, 9159–9162PubMedCrossRefGoogle Scholar
  51. 51.
    Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenbom, A. M., and Clore, G. M. (1988) The solution conformation of the antibacterial peptide cccropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27, 7620–7629Google Scholar
  52. 52.
    Shai, Y. (1995) Molecular recognition between membrane-spanning helices. TIBS 20, 460–464PubMedGoogle Scholar
  53. 53.
    Shai, Y. (1998) Mode of Action of Antibacterial Peptides in Mode of action of antibacterial peptides in Molecular mechanisms of immune responses in insects (Brey, P. T., and Hultmark, D., eds), pp. 111–134, Chapman and Hall, LondonGoogle Scholar
  54. 54.
    Christensen, B., Fink, J., Merrifield, R. B., and Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85, 5072–5076PubMedCrossRefGoogle Scholar
  55. 55.
    Cruciani, R. A., Barker, J. L., Durell, S. R., Raghunathan, G., Guy, H. R., Zasloff, M., and Stanley, E. F. (1992) Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur. J. Pharmacol. 226, 287–296PubMedCrossRefGoogle Scholar
  56. 56.
    Ehrenstein, G., and Lecar, H. (1977) Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10, 1–34PubMedCrossRefGoogle Scholar
  57. 57.
    Inouye, M. (1974) A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Natl. Acad. Sci. USA 71, 2396–2400PubMedCrossRefGoogle Scholar
  58. 58.
    Oiki, S., Danho, W., Madison, V., and Montal, M. (1988) M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc. Natl. Acad. Sci. USA 85, 8703–8707Google Scholar
  59. 59.
    Lear, J. D., Wasserman, Z. R., and DeGrado, W. F. (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181PubMedCrossRefGoogle Scholar
  60. 60.
    Hara, S., and Yamakawa, M. (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923–29927Google Scholar
  61. 61.
    Hara, S., Taniai, K., Kato, Y., and Yamakama, M. (1994) Isolation and alpha-amidation of the nonamidated form of cecropin-D from larvae of Bombyx mori. Comp. Biochem. Physiol. B 108, 303–308Google Scholar
  62. 62.
    Sun, D., Eccleston, E. D., and Fallon, A. M. (1999) Cloning and expression of three cecropin cDNAs from a mosquito cell line. FEBS Lett 454, 147–151PubMedCrossRefGoogle Scholar
  63. 63.
    Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1983) Solid-phase synthesis of cecropin A and related peptides. Proc. Natl. Acad. Sci. USA 80, 6475–6479PubMedCrossRefGoogle Scholar
  64. 64.
    Andreu, D., Ubach, J., Boman, A., Wahlin, B., Wade, D., Merrifield, R. B., and Boman, H. G. (1992) Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett 296, 190–194PubMedCrossRefGoogle Scholar
  65. 65.
    Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1985) N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry 24, 1683–1688PubMedCrossRefGoogle Scholar
  66. 66.
    Li, Z. Q., Merrifield, R. B., Boman, I. A., and Boman, H. G. (1988) Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBSLett 231, 299–302CrossRefGoogle Scholar
  67. 67.
    Merrifield, R. B., Vizioli, L. D., and Boman, H. G. (1982) Synthesis of the antibacterial peptide cecropin A (1–33). Biochemistry 21, 5020–5031PubMedCrossRefGoogle Scholar
  68. 68.
    Callaway, J. E., Lai, J., Haselbeck, B., Baltaian, M., Bonnesen, S. P., Weickmann, J., Wilcox, G., and Lei, S. P. (1993) Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob. Agents Chemother. 37, 1614–1619PubMedCrossRefGoogle Scholar
  69. 69.
    Zhao, C., Liaw, L., Lee, I. H., and Lehrer, R. I. (1997) cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava. FEBSLett 412, 144–148CrossRefGoogle Scholar
  70. 70.
    Strub, J. M., Garcia-Sablone, P., Lonning, K., Taupenot, L., Hubert, P., Van Dorsselaer, A., Aunis, D., and Metz-Boutigue, M. H. (1995) Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614–626 with antibacterial activity. Eur. J. Biochem. 229, 356–368PubMedCrossRefGoogle Scholar
  71. 71.
    Britigan, B. E., Lewis, T. S., McCormick, M. L., and Wilson, M. E. (1998) Evidence for the existence of a surface receptor for ferriclactoferrin and ferrictransferrin associated with the plasma membrane of the protozoan parasite Leishmania donovani. Adv. Exp. Med. Biol. 443, 135–140Google Scholar
  72. 72.
    Svistunenko, D. A., Patel, R. P., Voloshchenko, S. V., and Wilson, M. T. (1997) The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J. Biol. Chem. 272, 7114–7121PubMedCrossRefGoogle Scholar
  73. 73.
    Wilson, M. E., Vorhies, R. W., Andersen, K. A., and Britigan, B. E. (1994) Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi. Infect. Immun. 62, 3262–3269Google Scholar
  74. 74.
    Wilson, M. E., and Britigan, B. E. (1998) Iron acquisition by parasitic protozoa. Parasitology Today 14, 348–353PubMedCrossRefGoogle Scholar
  75. 75.
    Bartfeld, N. S., and Law, J. H. (1990) Isolation and molecular cloning of transferrin from the tobacco homworm, Manduca sexta. Sequence similarity to the vertebrate transferrins. J. Biol. Chem. 265, 21684–21691PubMedGoogle Scholar
  76. 76.
    Kurama, T., Kurata, S., and Natori, S. (1995) Molecular characterization of an insect transferrin and its selective incorporation into eggs during oogenesis. Eur. J. Biochem. 228, 229–235PubMedCrossRefGoogle Scholar
  77. 77.
    Yoshiga, T., Georgieva, T., Dunkov, B.C., Harizanova, N., Ralchev, K., and Law, J. H. (1999)Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260, 414–420PubMedCrossRefGoogle Scholar
  78. 78.
    Gwadz, R. W., Kaslow, D., Lee, J. Y., Maloy, W. L., Zasloff, M., and Miller, L. H. (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun!. 57, 2628–2633PubMedGoogle Scholar
  79. 79.
    Jaynes, J. M., Julian, G. R., Jeffers, G. W., White, K. L., and Enright, F. M. (1989) In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Pept. Res. 2, 157–160PubMedGoogle Scholar
  80. 80.
    Rodriguez, M. C., Zamudio, F., Torres, J. A., Gonzalez-Ceron, L., Possani, L. D., and Rodriguez, M. H. (1995) Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp. Parasitol. 80, 596–604CrossRefGoogle Scholar
  81. 81.
    Possani, L. D., Zurita, M., Delepierre, M., Hernandez, F. H., and Rodriguez, M. H. (1998) From noxiustoxin to Shiva-3, a peptide toxic to the sporogonic development of Plasmodium berghei. Toxicon 36, 1683–1692CrossRefGoogle Scholar
  82. 82.
    Boisbouvier, J., Prochnicka-Chalufour, A., Nieto, A. R., Torres, J. A., Nanard, N., Rodriguez, M. H., Possani, L. D., and Delepierre, M. (1998) Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur. J. Biochem. 257, 263–273CrossRefGoogle Scholar
  83. 83.
    Chalk, R., Townson, H., and Ham, P. J. (1995) Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp. Parasital. 80, 401–406CrossRefGoogle Scholar
  84. 84.
    Albuquerque, C. M., and Ham, P. J. (1996) In vivo effect of a natural Aedes aegypti defensin on Brugia pahangi development. Med. Vet. Entorno!. 10, 397–399CrossRefGoogle Scholar
  85. 85.
    Lowenberger, C. A., Ferdig, M. T., Bulet, P., Khalili, S., Hoffmann, J. A., and Christensen, B. M. (1996) Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi. Exp. Parasitol. 83, 191–201Google Scholar
  86. 86.
    Shahabuddin, M., Fields, I., Bulet, P., Hoffmann, J. A., and Miller, L. H. (1998) Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 89,103–112PubMedCrossRefGoogle Scholar
  87. 87.
    Beaty, B. J., and Carlson, J. O. (1997) Molecular manipulation of mosquitoes. Curr Opin. Infect. Dis. 10,372–376CrossRefGoogle Scholar
  88. 88.
    Rayms-Keller, A., Powers, A. M., Higgs, S., Olson, K. E., Kamrud, K. I., Carlson, J. O., and Beaty, B. J. (1995) Replication and expression of a recombinant Sindbis virus in mosquitoes. Insect. Mol. Biol. 4, 245–251PubMedCrossRefGoogle Scholar
  89. 89.
    Olson, K. E., Higgs, S., Gaines, P. J., Powers, A. M., Davis, B. S., Kamrud, K. I., Carlson, J. O., Blair, C. D., and Beaty, B. J. (1996) Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 272, 884–886PubMedCrossRefGoogle Scholar
  90. 90.
    Seabaugh, R. C., Olson, K. E., Higgs, S., Carlson, J. O., and Beaty, B. J. (1998) Development of a chimeric sindbis virus with enhanced per Os infection of Aedes aegypti. Virology 243, 99–112CrossRefGoogle Scholar
  91. 91.
  92. 92.
  93. 93.
    Hoffmann, J. A., and Reichhart, J. M. (1997) Drosophila Immunity. Trends Cell Biol. 7, 309–316Google Scholar
  94. 94.
    Engstrom, Y. (1998) Insect Immune Gene Regulation in Molecular mechanisms of immune responses in insects. (Brey, P. T., and Hultmark, D., eds), pp. 211–244, Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Carl A. Lowenberger
    • 1
  1. 1.Animal Health and Biomedical SciencesUniversity of Wisconsin-MadisonMadison

Personalised recommendations