Advertisement

Gonadal Steroids and Cognition

  • P. A. Keenan
  • R. M. Soleymani
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

The classic definition of a hormone is a secretion of an endocrine gland that, released into the circulation, exerts its major influence on physiological responses at distant targets in the body. However, there is an intricate interplay between hormones and target areas within the brain as hormones modulate and are modulated by neurotransmitters. These hormone-brain-behavior interactions serve as the basis of the neuroendocrine system. The hormones relevant to this chapter are the gonadal steroid hormones: the estrogens, progestins, and androgens. Two dichotomies are frequently used to describe the effects of gonadal hormones on the brain and subsequent behavior: organizational-activational and genomic-nongenomic. Organizational effects refer to the effect the hormonal milieu during neurodevelop-ment has on sexual differentiation, or how the brain is organized. Such effects occur during critical periods of development and involve permanent structural changes in brain morphology. In contrast, activational effects are transient and alterations in neural circuitry during adulthood that induce time-limited structural and functional changes. Genomic and nongenomic effects refer to hormonal actions on individual nerve cells. They are indirect in that the hormones modulate messenger RNA and protein synthesis by controlling the number of receptor proteins and amount of neurotransmitter, neuropeptide, or neurohormone stored in the cell (Brown, 1994). Genomic effects that involve intracellular receptors take longer to occur and are much more enduring. In contrast, the more direct or nongenomic effects exert their influence briefly via cell surface receptors, for example, by altering the electrophysiological activity of the cell membrane (Brown, 1994).

Keywords

Menstrual Cycle Congenital Adrenal Hyperplasia Spatial Ability Estrogen Replacement Therapy Gonadal Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. I. (1972). Cognitive performance and mood changes as they relate to the menstrual cycle and estrogen level.Dissertation Abstracts International, 33, 1758–1778.Google Scholar
  2. Argiolas, A., & Gessa, G. L. (1991). Central functions of oxytocin. Neuroscience Biobehavioral Review,15(2), 217–231.Google Scholar
  3. Baker, S., & Ehrhardt, A. (1974). Sex related differences in behavior. In R. Friedman, R. Richard, & R.VandeWeile (Eds.), Sex related differences in cognitive function (pp. 53–76). New York: Wiley.Google Scholar
  4. Barrett-Connor, E., & Kritz-Silverstein, D. (1993). Estrogen replacement therapy and cognitive function in older women. Journal of the American Medical Association, 269, 2637–2641.PubMedGoogle Scholar
  5. Beck, A. T. (1987). Beck depression inventory: Manual. San Antonio, TX: Psychological Corporation.Google Scholar
  6. Berman, K. F., Schmidt, P. J., Rubinow, D. R., Danaceau, M. A., Van Horn, J. D., Esposito, G., Ostrem, J. L.,& Weinberger, D. R. (1997). Modulation of cognition-specific cortical activity by gonadal steroids: A positron-emission tomography study in women. Proceedings of the National Academy of Sciences USA, 94, 8836–8841.Google Scholar
  7. Bohus, B. (1980). Vasopressin, oxytocin and memory: Effects on consolidation and retrieval processes.Acta Psychiatrica Belgica (Bruxelles), 80, 714–720.Google Scholar
  8. Brindle, P. M., Brown, M. W., Brown, J., Griffith H. B., & Turner G. M. (1991). Objective and subjective memory impairment in pregnancy. Psychological Medicine, 21, 647–653.PubMedGoogle Scholar
  9. Broverman, D. M., Vogel, W., Klaiber, E. L., Majcher, D., Shea, D., & Paul, V. (1981). Changes in cognitive task performance across the menstrual cycle. Journal of Comparative and Physiological Psychol-ogy, 95, 646–654.Google Scholar
  10. Brown, R. (1994). Steroid and thyroid hormone receptors. In R. Brown (Ed.), An introduction to neuroendocrinology (pp. 147–190). New York: Cambridge University Press.Google Scholar
  11. Buchsbaum, M. S., & Henkin, R. J. (1980). Perceptual abnormalities in patients with chromatin negative gonadal dysgenesis and hypogonadotropic hypogonadism.International Journal of Neuroscience,11, 201–209.PubMedGoogle Scholar
  12. Butters, N., Wolfe, J. Granholm, E., & Martone, M. (1986). An assessment of verbal recall, recognition,and fluency abilities in patients with Huntington’s disease. Cortex, 22, 11–32.PubMedGoogle Scholar
  13. Caldwell, B. M., & Watson, R. I. (1954). An evaluation of psychologic effects of sex hormone administration in aged women. Results of therapy after 18 months. Journal of Gerontology, 7, 228–244.Google Scholar
  14. Cambell, S., & Whitehead, M. (1977). Oestrogen therapy and the menopausal syndrome. Clinical Obstetrics and Gynecology, 4, 31–47.Google Scholar
  15. Christiansen, K., & Knussmann, R. (1987). Sex hormones and cognitive functioning in men. Neuropsychobiology,18, 27–36.PubMedGoogle Scholar
  16. Clark, C., Klonoff, H., & Hayden, M. (1990). Regional cerebral glucose metabolism in Turner’s Syndrome.Canadian Journal of Neurological Sciences, 17, 140–144.PubMedGoogle Scholar
  17. Clarke, S., Kraftsik, R., & van der Loos, H. (1989). Forms and measures of adult and developing human corpus callosum: Is there sexual dimorphism? Journal of Comprehensive Neurology, 280, 213–230.Google Scholar
  18. Cooper, J. A., Blue, J. H., & Ross, S. (1983). Automatization and perceptual restructuring performance across the menstrual cycle. Bulletin of the Psychonomic Society, 21, 179–182.Google Scholar
  19. Dalton, K. (1960). Schoolgirls’ behavior and menstruation. Canadian Journal of Psychiatry, 30, 474–482.Google Scholar
  20. Delis, D. C., Kramer, J., Kaplan, E. & Ober, B. (1987). The California verbal learning test. San Antonio,TX: Harcourt, Brace, Jovanovich.Google Scholar
  21. Downey, J., Elkin, E. J., Ehrhardt, A. A., Meyer-Bahlburg, H. F., Bell, J. J., & Morishima, A. (1991).Cognitive ability and everyday functioning in women with Turner’s syndrome. Journal of Learning Disabilities, 24, 32–39.PubMedGoogle Scholar
  22. Elfgren, C. I., & Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitive strategy.Neuropsychologia, 7(4), 0234–0243.Google Scholar
  23. Fedor-Freyberg, P. (1997). The influence of estrogen on the well being and mental performance in climacteric and postmenopausal women. Acta Obstetrica Gynaecologica, 64, 5–69.Google Scholar
  24. Ferguson-Smith, M. A. (1966). Sex chromatin, Klinefelter’s syndrome, and mental deficiency. In K. L.Moore (Ed.), The sex chromatin (pp. 328–363). Philadelphia: W. B. Saunders.Google Scholar
  25. Flowers, K. A., Pearce, Z., & Pearce, J. M. S. (1985). Recognition memory in Parkinson’s disease. Journal of Neurological and Neurosurgical Psychiatry, 47, 1174–1181.Google Scholar
  26. Funderburk, S. J., & Ferjo, N. (1978). Clinical observations in Klinefelter (47,XXY) syndrome.Journal of Mental Deficiencies Research, 22, 207–212.Google Scholar
  27. Gazzaley, A. H., Weiland, N. G., McEwen, B. S., & Morrison, J. H. (1996). Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. Journal of Neuroscience, 16,6830–6838.PubMedGoogle Scholar
  28. Gordon, H. W., & Lee, P. A. (1986). A relationship between gonadotropins and visuospatial function.Neuropsychologia, 24, 563–576.PubMedGoogle Scholar
  29. Gordon, H. W., Corbin, E. D., & Lee, P. A. (1986). Changes in specialized cognitive function following changes in hormone levels. Cortex, 22, 399–415.PubMedGoogle Scholar
  30. Gouchie, C., & Kimura, D. (1991). The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology, 16, 323–334.PubMedGoogle Scholar
  31. Gould, E., Woolley, C. S., Frankfurt, M., & McEwen, B. S. (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. Journal of Neuroscience, 10, 1286–1291.PubMedGoogle Scholar
  32. Hampson, E. (1990a). Variations in sex-related cognitive abilities across the menstrual cycle. Brain andCognition, 14, 26–43.Google Scholar
  33. Hampson, E. (1990b). Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology, 15, 97–100.PubMedGoogle Scholar
  34. Hampson, E., & Kimura, D. (1993). Sex differences and hormonal influences on cognitive function in humans. In J. B. Becker, S. M. Breedlove, & D. Crews (Eds.), Behavioral endocrinology (pp. 357–400). Cambridge, MA: MIT Press.Google Scholar
  35. Harris, K. M., & Landis, D. N. D. (1986). Membrane structure at synaptic functions in area CA1 of the rat hippocampus. Neuroscience, 19, 857–872.PubMedGoogle Scholar
  36. Hartley, L. R., Lyons, D., & Dunne, M. (1987). Memory and menstrual cycle. Ergonomics, 30, 111–120.PubMedGoogle Scholar
  37. Helleday, J., Bartfai, A., Ritzen, M., & Folsum, M. (1994). General intelligence and cognitive profile in women with congenital adrenal hyperplasia (CAH). Psychoneuroendocrinology, 19, 343–356.PubMedGoogle Scholar
  38. Hier, D. B., & Crowley, W. F. (1982) Spatial ability in androgen-defìcient men. New England Journal of Medicine, 306, 1202–1205.PubMedGoogle Scholar
  39. Holloway, R. L., & de Lacoste, M. C. (1986). Sexual dimorphism in the human corpus callosum: An extension and replication study. Human Neurobiology, 5, 87–91.PubMedGoogle Scholar
  40. Hugdahl, K., Lundervold, A., Ersland, L., Smievoll, A. I., Sundberg, H., Barndon, R., & Roscher, B. E. (1999). Left frontal activation during a semantic categorization task: An fMRI study. International Journal of Neuroscience, 99(1–4), 49–58.PubMedGoogle Scholar
  41. Janowsky, J. S., Oriatt, S. K., & Orwoll, E. S. (1994). Testosterone influences spatial cognition in older men. Behavioral Neuroscience, 108, 325–332.PubMedGoogle Scholar
  42. Jarrahi-Zadeh, M. I., Kane, F. J., Van De Castle, R. L., Lachenbruch, P. A., & Ewing, J. A. (1969). Emotional and cognitive changes in pregnancy and early puerperium. British Journal of Psychiatry, 115, 797–805.PubMedGoogle Scholar
  43. Juraska, J. M. (1991). Sex differences in cognitive regions of the rat brain. Psychoneuroendocrinology, 16,105–119.PubMedGoogle Scholar
  44. Kampen, D. L., & Sherwin, B. B. (1994). Estrogen use and verbal memory in healthy menopausal women.Obstetrics and Gynecology, 83, 979–983.PubMedGoogle Scholar
  45. Kane, F. J., Harman, W. J., Jr, Keeler, M. H., & Ewing, J. A. (1968). Emotional and cognitive disturbance in the early puerperium. British Journal of Psychiatry, 114, 99–102.PubMedGoogle Scholar
  46. Keenan, P. A., Stern, R. A., Janowsky, D. S., & Pedersen, C. A. (1992). Psychological aspects of premen-strual syndrome I: Cognition and memory. Psychoneuroendocrinology, 17, 179–187.PubMedGoogle Scholar
  47. Keenan, P. A., Lindamer, L. A., & Jong, S. K. (1995). Menstrual phase-independent retrieval deficit in women with PMS. Biological Psychiatry, 38, 369–377.PubMedGoogle Scholar
  48. Keenan, P. A., Jacobson, M. W., Soleymani, R. M., Mayes, M. D., Stress, M. A., & Yaldoo, D. T. (1996). The effect on memory of chronic prednisone treatment in patients with systemic disease. Neurology,47, 1396–1402.PubMedGoogle Scholar
  49. Keenan, P. A., Yaldoo, D. T., Stress, M. E., Fuerst, D., & Ginsburg, K. (1998). Explicit memory in pregnant women. American Journal of Obstetrics and Gynecology, 179(3–1), 731–737.PubMedGoogle Scholar
  50. Komnenich, P., Lane, D. M., Dickey, R. P., & Stone, S. C. (1978). Gonadal hormones and cognitive performance. Physiological Psychiatry, 6, 115–120.Google Scholar
  51. Larrabee, G. J., Kane, R. I., Schuck, J. R., & Francis, D. J. (1985). Construct validity of various memory testing procedures. Journal of Clinical and Experimental Neuropsychology, 7, 239–250.PubMedGoogle Scholar
  52. Loy, R., Gerlach, J. L., & McEwen, B. S. (1988). Autoradiographical localization of estradiol-binding neurons in the rat hippocampal formation and entorhinal cortex. Experimental Neurology, 89,484–490.Google Scholar
  53. Luine, V. N. (1985). Estradiol increases choline acetryltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Experimental Neurology, 89, 484–490.PubMedGoogle Scholar
  54. Macoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford, CA: Stanford University Press.Google Scholar
  55. McEwen, B. S., Biegon, A., Fischette, C. T., Luine, V. N., Parsons, B., & Rainbow T. C. (1984). Toward a neurochemical basis of steroid hormone action. In L. Martini & W. F. Ganong (Eds.), Frontiers in neuroendocrinology (Vol. 8, pp. 153–176) New York: Raven Press.Google Scholar
  56. McGlone, J. (1977). Sex differences in the cerebral organization of verbal functions in patients with unilateral brain lesions. Brain, 100, 775–793.PubMedGoogle Scholar
  57. McGuire, L., & Omenn, G. (1975). Congenital adrenal hyperplasia II. Cognitive and Behavioral Studies,5, 175–188.Google Scholar
  58. Mead, L. A., & Hampson, E. (1996). A set difference in turning bias in humans. Behavioral Brain Besearch, 78, 73–79.Google Scholar
  59. Money, J. (1964). Two cytogenetic syndromes: Psychologic comparisons. I. Intelligence and specific quotients. Journal of Psychiatric Besearch, 2, 223–231.Google Scholar
  60. Money, J., & Lewis, V. (1966). IQ, genetics and accelerated growth: Adrenogenital Syndrome. Johns Hopkins Hospital Bulletin, 118, 365–373.Google Scholar
  61. Murphy, D., DeCarli, G., & Daly, E. (1993). X-chromosome effects on female brain: A magnetic resonance imaging study of Turner’s syndrome. Lancet, 342, 1197–2000.PubMedGoogle Scholar
  62. Murphy, D. G., Mentis, M. J., Pietrini, P., Grady, C., Daly, E., Haxby, J. V., De LaGranja, M., Allen, G.,Largay, K., White B. J., Powell, C. M., Horwitz, B., Rapoport, S. I., & Schapiro, M. D. (1997). A PET study of Turner’s syndrome: Effects of sex steroids and the X chromosome on brain. Biological Psychiatry, 41, 285–298.PubMedGoogle Scholar
  63. Nass, R., & Baker, S. (1991). Learning disabilities in children with congenital adrenal hyperplasia.Journal of Child Neurology,6, 306–312.PubMedGoogle Scholar
  64. Netley, C., & Rovet, J. (1982). Verbal deficits in children with 47,XXY and 47.XXX karotypes: A descriptive and experimental study.Brain and Language,17, 58–72.PubMedGoogle Scholar
  65. Netley, C., & Rovet, J. (1984). Hemispheric lateralization in 47,XXY Klinefelter’s syndrome boys.Brain and Cognition, 3, 10–18.PubMedGoogle Scholar
  66. Newcomer, J. W., Craft, S., & Hershey, T. (1994). Glucocorticoid-induced explicit memory performance in adult humans.Journal of Neuroscience, 14, 2047–2053.PubMedGoogle Scholar
  67. Pang, S., Levine, L. S., Chow, D., Sagiani, F., Saenger, P., & New, M. I. (1979). Dihydrotestosterone and its relationship to testosterone in infancy and childhood.Journal of Clinical Endocrinological Metabo-lism, 48, 821–826.Google Scholar
  68. Perlman, S. (1973). Cognitive abilities of children with hormonal abnormalities. Screening by psycho-educational tests.Journal of Learning Disabilities, 6, 26–34.Google Scholar
  69. Pfaff, D. W. (1966). Morphological changes in the brain of adult male rats after neonatal castration.Journal of Endocrinology, 36, 415–416.PubMedGoogle Scholar
  70. Phillips, S. M., & Sherwin, B. B. (1992a). Variations in memory function and sex steroid hormones across the menstrual cycle.Psychoneuroendocrinology, 17, 496–506.Google Scholar
  71. Phillips, S. M., & Sherwin, B. B. (1992b). Effects of estrogen on memory function in surgically menopausalwomen.Psychoneuroendocrinology, 17, 486–495.Google Scholar
  72. Poser, C. M., Kassier, M. R., & Peyser, J. M. (1986). Benign encephalopathy of pregnancy, preliminary clinical observations.Acta Neurologica Scandinavica, 73, 39–43.PubMedGoogle Scholar
  73. Ratcliffe, S. G., Bancroft, J., Axworthy, D., & McLaren, W. (1982). Klinefelter’s Syndrome in adolescence.Archives of Diseases in Childhood, 57, 6–12.Google Scholar
  74. Resnick, S. M. (1995). Estrogen replacement therapy and cognitive aging [abstract]. Presented at the American Psychological Association, 1995.Google Scholar
  75. Resnick, S., Berenbaum, S., Gottesman, I., & Bouchard, T. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia.Developmental Psychology, 22, 191–198.Google Scholar
  76. Resnick, S. M., Maki, P. M., Golski, S., Kraut, M., & Zonderman, A. B. (1998). Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance.Google Scholar
  77. Rice, M. M., Graves, A. B., McCurry, S. M., & Larson, E. B. (1997). Estrogen replacement therapy and cognitive function in postmenopausal women without dementia.American Journal of Medicine, 103(3a), 26–35.Google Scholar
  78. Robinson, D., Friedman, L., Marcus, R., Tinklenberg, J., & Yesavage, J. (1994). Estrogen replacement therapy and memory in older women.American Geriatric Society, 42, 919–922.Google Scholar
  79. Sanders, B., Soares, M. P., & D’Aquila, J. M. (1982). The sex difference on one test of spatial visualization:A nontrivial difference.Child Development, 53, 1106–1110.PubMedGoogle Scholar
  80. Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging.Journal of Neuroscience, 5, 1222–1227.PubMedGoogle Scholar
  81. Schmidt, P., Fazekas, F., Reinhart, B., Kapeller, P., Fazekas, G., Offenbacher, H., Eber, B., Schumacher,M., & Freidl, W. (1996). Estrogen replacement therapy in older women: A neuropsychological and brain MRI study.Journal of the American Geriatric Society, 44, 1307–1313.Google Scholar
  82. Schmidt, P., Berman, K., Leibenluft, E., Danaceau, M., Keenan, P., Nieman, L., & Rubinow, D. (1997). The effects of hypogonadism and gonadal steroids on brain physiology and behavior in humans.Meeting of the American College of Neuropsychopharmacology, Hawaii.Google Scholar
  83. Schneider, H. P. G. (1982). Oestriol and the menopause: Clinical results from a prospective study. In P.Fioretti, L. Martini, G. B. Melis, & S. S. C. Yen (Eds.),The menopause: Clinical, endocrinological and pathophysiological aspects (pp. 523–533). New York: Academic Press.Google Scholar
  84. Schucard, P. W., Schucard, J. L., Clopper, R. R., & Schachter, M. (1992). Electrophysiological and neuropsychological indices of cognitive processing deficits in Turner’s syndrome.Developmental Neuropsychology, 8, 299–323.Google Scholar
  85. Shaffer, J. (1962). A specific cognitive deficit observed in gonadal aplasia (Turner’s syndrome).Journal of Clinical Psychology, 18, 403–406.PubMedGoogle Scholar
  86. Sharp, K., Brindle, P. M., Brown, M. W., & Turner, G. M. (1993). Memory loss during pregnancy.British Journal of Obstetrics and Gynaecology, 100, 209–215.PubMedGoogle Scholar
  87. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R.T., Naftolin, F., Palter, S. F., Marchione, K. E., Katz, L., Shankweiler, D. P., Fletcher, J. M., Lacadie, C., Keltz, M., & Gore, J. C. (1999). Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks.Journal of the American Medical Association, 281, 1997–1202.Google Scholar
  88. Sherwin, B. B. (1988). Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women.Psychoneuroendocrinology, 13, 345–357.PubMedGoogle Scholar
  89. Sherwin, B., & Tulandi, T. (1996). “Add-back” estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri.Journal of Clinical Endocrinology Metabolism, 81, 2545–2549.PubMedGoogle Scholar
  90. Shute, V. J., Pellegrino, J. W., & Hubert, L. (1983). The relationship between androgen levels and human spatial abilities.Bulletin of the Psychonomic Society, 21, 465–468.Google Scholar
  91. Silverman, E. M., & Zimmer, C. H. (1975). Speech fluency fluctuations during the menstrual cycle.Journal of Speech and Hearing Research, 18, 202–206.PubMedGoogle Scholar
  92. Silverman, E. M., Zimmer, C. H., & Silverman, F. H. (1974). Variability of stutterers’ speech dysfluency:The menstrual cycle.Perceptual Motor Skills, 38, 1037–1038.PubMedGoogle Scholar
  93. Sinforiani, E., Livieri, C., Mauri, M., Bisio, P., Sibilla, L., Chiesa, L., &amp: Martelli, A. (1994). Cognitive and neuroradiological findings in congenital adrenal hyperplasia. Psychoneuroendocrinology, 19,55–64.PubMedGoogle Scholar
  94. Sloviter, R. S., Vaqliquette, G., & Abrams, G. M. (1989). Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science, 243, 535–538.PubMedGoogle Scholar
  95. Soleymani, R. M., Keenan, P. A., & Ginsburg, K. A. (1996). Gonadal steroid levels and memory function in infertile women. Biological Psychiatry, 39, 490.Google Scholar
  96. Sommers, B. A. (1973). The effect of menstruation on cognitive and perceptual behavior: A review.Psychosomatic Medicine, 35, 515–534.Google Scholar
  97. Sommers, B. A. (1983). How does menstruation affect cognitive competence and psychophysiological response? Women and Health (pp. 63–90). New York: Haywood Press.Google Scholar
  98. Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests. Administration, norms and commentary. New York: Oxford University Press, 270–279.Google Scholar
  99. Stewart, D. W., Netley, C. T., & Park, E. (1982) Summary of findings of children with 47,XXY, 47,XYY and 47,XXX karyotypes. In D. A. Stewart (Ed.), Children with sex chromosome aneuploidy: Follow-up studies (pp. 1–5). New York: Alan R. Liss.Google Scholar
  100. Swanson, D. W., & Stipes, A. H. (1969). Psychiatric aspects of Klinefelter’s syndrome. American Journal of Psychiatry, 126, 814–822.PubMedGoogle Scholar
  101. Terasawa, E., & Timiras, P. S. (1968). Electrical activity during the estrous cycle of the rat: Cyclic changes in limbic structures. Endocrinology, 83, 201–216.Google Scholar
  102. Toran-Allerand, C. D. (1996). The estrogen/neurotrophin connection during neural development: Is colocalization of estrogen receptors with the neurotrophins and their receptors biologically relevant? Developmental Neurosciences, 18, 36–48.Google Scholar
  103. van Wimersma Greidanus, T. B., Jolles, J., & De Wied, D. (1985). Hypothalamic neuropeptides and memory. Acta Neurochirurgica (Wien), 75(1–4), 99–105.Google Scholar
  104. Walzer, S., Wolff, P. H., Bowen, D., Silbert, A. R., Bashir, A. S., Gerald, P. S., & Richmond, J. B. (1978). A method for the longitudinal study of behavioral development in infants and children: The early development of XXY children. Journal of Child Psychology and Psychiatry, 19, 213–229.PubMedGoogle Scholar
  105. Watts, F. N., Morris, L., & MacLeod, A. K. (1987). Recognition memory in depression. Journal of Abnormal Psychiatry, 3, 273–275.Google Scholar
  106. Wechsler, D. (1987). Wechsler Adult Intelligence Scale-Revised. New York: Psychological Corporation.Google Scholar
  107. Weingartner, H., & Silberman, E. (1982). Models of cognitive impairment: Cognitive changes in depression. Psychopharmacological Bulletin, 18(2), 27–42.Google Scholar
  108. Wild, R. A. (1996). Estrogen: Effects on the cardiovascular tree. Obstetrics and Gynecology 87(2) (Suppl.), 27S–35S.PubMedGoogle Scholar
  109. Wilson, C. J. (1984). Passive cable properties of dendritic spines and spiny neurons. Journal of Neuroscience, 4, 281–297.PubMedGoogle Scholar
  110. Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: A post mortem morphological study. Brain, 112, 799–835.PubMedGoogle Scholar
  111. Witelson, S. F. (1991). Neural sexual mosaicism: Sexual differentiation of the human temporo-parietal region for functional symmetry. Psychoneuroendocrinology, 16, 131–153.PubMedGoogle Scholar
  112. Witkin, H. A., Mednic, S. A., Schulsinger, F., Christensen, S. A., Goodenough, D. K., Hirshchhorn, K.,Lundsteen, C., Owen, D. R., Philip, J., Rubin, D. B., & Stocking, M. (1976). Criminality in XYY and XXY men. Science, 193, 547–555.PubMedGoogle Scholar
  113. Wolfe, J., Granholm, E., Butters, N., Saunders, E., & Janowsky, D. (1987). Verbal memory deficits associated with major affective disorders: A comparison of unipolar and bipolar patients. Journal of Affective Disorders, 13, 83–92.PubMedGoogle Scholar
  114. Wolkowitz, O. M., Reus, V. I., Weingartner, H., Thompson, K., Breier, A., Doran, A., Rubinow, D., & Picker, D. (1990). Cognitive effects of corticosteroids. American Journal of Psychiatry, 147, 1297–1303.PubMedGoogle Scholar
  115. Woolley, C. S., Gould, E., Frankfurt, M., & McEwen, B. S. (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. Journal of Neurosciences, 10,4035–4039.Google Scholar
  116. Woolley, C. S., Weiland, N. G., McEwen, B. S., & Schwartzkroin, P. A. (1997). Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input:Correlation with dendritic spine density. Journal of Neuroscience, 17, 1848–1859.PubMedGoogle Scholar
  117. Yaffe, K., Sawaya, G., Lieberburg, I., & Grady, D. (1998). Estrogen therapy in postmenopausal women:Effects on cognitive function and dementia. Journal of the American Medical Association, 279,688–695.PubMedGoogle Scholar
  118. Yanai, J. (1979). Delayed maturation of the male cerebral cortex in rats. Acta Anatomica, 104, 335–339.PubMedGoogle Scholar
  119. Zung, W. W. K. (1965). A self-rating depression scale. Archives of General Psychiatry, 12, 63–70.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • P. A. Keenan
    • 1
  • R. M. Soleymani
    • 1
  1. 1.Department of Psychiatry and Behavioral NeurosciencesWayne State University School of Medicine, Harper HospitalDetroitUSA

Personalised recommendations