Skip to main content

Cognitive Neuroendocrinology

New Approaches to the Study of Alzheimer’s Disease and Other Memory Disorders

  • Chapter
Medical Neuropsychology

Part of the book series: Critical Issues in Neuropsychology ((CINP))

  • 196 Accesses

Abstract

Traditional research in neuropsychology has focused on examining how brain lesions or disruption of neurotransmitter systems affect cognition. Although this corpus of work has produced a rich foundation of knowledge about brain-behavior relationships, recent work has extended this focus to study hormonal influences on the brain and cognition. Perhaps the best-known area in this regard has been the effects of sex hormones, such as estrogen and testosterone, on cognition. However, equally exciting advances are being made in a variety of other neuroendocrine systems that illustrate the diversity and extent of hormonal influences on normal cognition and the manner in which neuroendocrine disruption is associated with a variety of disease states. Recent work in two neuroendocrine systems will be described to illustrate the burgeoning field of cognitive neuroendocrinology and the novel methodologies that have been developed or adapted for use in this area. The first line of research describes how disruption of systemic and central glucose metabolism may contribute to cognitive changes in normal and pathological aging. The second area of research involves the study of how stress hormones affect cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardgett, M. E., Taylor, G. T., Csernansky, J. G., Newcomer, J. W., & Nock, B. (1994). Chronic corticosterone treatment impairs spontaneous alternation behavior in rats. Behavioral and Neural Biology, 61, 186–190.

    Article  PubMed  Google Scholar 

  • Bender, B. G., Lerner, J. A., & Poland, J. E. (1991). Association between corticosteroids and psychologic change in hospitalized asthmatic children. Annals of Allergy, 66, 414–419.

    PubMed  Google Scholar 

  • Bennett, M. C., Diamond, D. M., Fleshner, M, & Rose, G. M. (1991). Serum corticosterone level predicts the magnitude of hippocampal primed burst potentiation and depression in urethane anesthetized rats. Psychobiology, 19, 301–307.

    Google Scholar 

  • Benton, A. L., Varney, N. R., & Hamsher, K. (1978). Visuospatial judgement: A clinical test. Archives of Neurology, 35, 364–367.

    Article  PubMed  Google Scholar 

  • Bodnoff, S. R., Humphrey, A. G., Lehmann, J. G., Diamone, D. M., Rose, G. M., & Meaney, M. J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity and hippocampal neuropathology in young and mid aged rats. Journal of Neuroscience, 15, 61–69.

    PubMed  Google Scholar 

  • Bohus, B., & de Weid, D. (1980). Pituitary adrenal system hormones and adaptive behavior. In I. G. Jones & I. W. Henderson (Eds.), General comparative and clinical endocrinology of the adrenal cortex (pp. 265–347). London: Academic Press.

    Google Scholar 

  • Borrell, J., De Kloet, E. R., & Bohus, B. (1984). Corticosterone decreases the efficacy of adrenaline to affect passive avoidance retention of adrenalectomized rats. Life Science, 34, 99–105.

    Article  Google Scholar 

  • Craft, S., Zallen, G., & Baker, L. D. (1992). Glucose and memory in mild senile dementia of the Alzheimer’s type. Journal of Clinical and Experimental Neuropsychology, 14, 253–267.

    Article  PubMed  Google Scholar 

  • Craft, S., Dagogo-Jack, S., Wiethop, B., Murphy, C., Nevins, R., Fleischman, S., Rice, V., Newcomer, J., &Cryer, P. E. (1993). The effects of hyperglycemia on memory and hormone levels in mild senile dementia of the Alzheimer’s type: A longitudinal study. Behavioral Neuroscience, 107, 926–940.

    Article  PubMed  Google Scholar 

  • Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P. E., Sheline, Y., Luby, J., Dagogo-Jack, A., & Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123–130.

    Article  PubMed  Google Scholar 

  • Craft, S., Peskind, E., Schwartz, M. W., Schellenberg, G. D., Raskind, M., & Porte, D., Jr. (1998). Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology, 50, 164–168.

    Article  PubMed  Google Scholar 

  • Craft, S., Asthana, S., Newcomer, J. W., Wilkinson, C. W., Baker, L. D., Cherrier, M., Tio Matos, I., Lofgreen, C., Latendresse, S., Petrova, A., Plymate, S., Raskind, M., Scroggin, K., & Veith, R. C. (1999). Enhancement of memory in Alzheimer’s disease with insulin and somatostatin, but not glucose. Archives of General Psychiatry, 56, 1135–1140.

    Article  PubMed  Google Scholar 

  • Dachir, S., Kadar, T., Robinzon, B., & Levy, A. (1993). Cognitive deficits induced in young rats by long-term corticosterone administration. Behavioral and Neural Biology, 60, 103–109.

    Article  PubMed  Google Scholar 

  • deLeon, M. J., McRae, T., Rusinek, H., Covnit, A., DeSanti, S., Tarshish, C., Golomb, J., Volkow, N., Daisley, K., Orentreich, N., & McEwen, B. (1997). Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s disease. Journal of Clinical Endocrinology and Metabolism, 82, 3251–3259.

    Google Scholar 

  • Diamond, D. M., Bennett, M. C., Fleshner, M., & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421–430.

    Article  PubMed  Google Scholar 

  • Endo, Y., Nishimura, J.-I., & Kimura, F. (1996). Impairment of maze learning in rats following long-term glucocorticoid treatments. Neuroscience Letters, 203, 199–202.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Besearch, 12(3), 189–198.

    Google Scholar 

  • Foy, M. R., Stanton, M. E., Levine, S., & Thompson, R. F. (1987). Behavioral stress impairs long-term potentiation in rodent hippocampus. Behavioral and Neural Biology, 48,138–149.

    Article  PubMed  Google Scholar 

  • Gold, P. E., & Stone, W. S. (1988). Neuroendocrine effects on memory in aged rodents and humans. Neurobiology of Aging, 9, 709–717.

    Article  PubMed  Google Scholar 

  • Gold, P. E., Vogt, J., & Hall, J. L. (1986). Glucose effects on memory: Behavioral and pharmacological characteristics. Behavioral and Neural Biology, 46, 145–155.

    Article  PubMed  Google Scholar 

  • Hoyer, S. (1994). Desensitization of the neuronal insulin receptor as an etiological factor in sporadic late-onset dementia of the Alzheimer type? In K. Iqbal, J. A. Mortimer, B. Winblad, & H. M. Wisniewski (Eds.), Research advances in Alzheimer’s disease and related disorders (pp. 447–451). New York: Wiley.

    Google Scholar 

  • Horner, H. C., Packan, D. R., & Sapolsky, R. M. (1990). Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology, 52, 57–64.

    Article  PubMed  Google Scholar 

  • Kamboh, M. I. (1995). Apolipoprotein E polymorphism and susceptibility to Alzheimer’s disease. Human Biology, 67(2), 195–215.

    PubMed  Google Scholar 

  • Jenike, M. A., & Albert, M. S. (1984). The DEX suppression test in patients with presenile and senile dementia of the Alzheimer’s type. Journal of the American Geriatric Society, 32, 441–444.

    Google Scholar 

  • Keenan, P. A., Jacobson, M. W., Soleymani, R. M., & Newcomer, J. W. (1995). Commonly used therapeutic doses of glucocorticoids impair explicit memory. Annals of the New York Academy of Science, 761, 400–402.

    Article  Google Scholar 

  • Leloup, C., Arluison, M., Kassis, N., Lepetit, N. K., Cartier, N., Ferre, P., & Penicaud, L. (1996). Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Molecular Brain Research, 38, 45–53.

    Article  PubMed  Google Scholar 

  • Lezak, M. D. (1993). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Luine, V., Villegas, M., Martinez, C, & McEwen, B. S. (1994). Repeated stress causes reversible impairments of spatial memory performance. Brain Research, 639, 167–170.

    Article  PubMed  Google Scholar 

  • Magarinos, A. M., Ferrini, M., & De Nicola, A. F. (1989). Corticosteroid receptors and glucocorticoid content in microdissected brain regions: Correlative aspects. Neuroendocrinology, 50, 673–678.

    Article  PubMed  Google Scholar 

  • Manning, C., Ragozzino, M., & Gold, P. E. (1993). Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiological Aging, 14, 523–528.

    Article  Google Scholar 

  • Mauri, M., Sinforiani, E., Bono, G., Vignati, F., Berselli, M. E., Attanasio, R., & Nappi, G. (1993). Memory impairment in Cushing’s disease. Acta Neurologica Scandinavica, 87, 52–55.

    Article  PubMed  Google Scholar 

  • McCall, A. L. (1992). The impact of diabetes on the CNS. Diabetes, 41, 557–570.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (1982). Glucocorticoids and hippocampus: Receptors in search of function. In D. Ganten & D. Pfaff (Eds.), Adrenal actions on brain (pp. 1–18). New York: Springer-Verlag.

    Google Scholar 

  • Newcomer, J. W., Faustman, W. O., Whiteford, H. A., Moses, J. A., Jr., & Csernansky, J. G. (1991). Symptomatology and cognitive impairment associate independently with post-dexamethasone cortisol concentrations in unmedicated schizophrenic patients. Biological Psychiatry, 29, 855–864.

    Article  PubMed  Google Scholar 

  • Newcomer, J. W., Craft, S., Hershey, T., Askins, K., & Bardgett, M. E. (1994). Glucocorticoid-induced impairment in declarative memory performance in adult humans. Journal of Neuroscience, 14, 2047–2053.

    PubMed  Google Scholar 

  • Palovcik, R. A., Phillips, M. I., Kappy, M. S., & Raizada, M. K. (1984). Insulin inhibits pyramidal neurons in hippocampal slices. Brain Research, 309, 187–191.

    Article  PubMed  Google Scholar 

  • Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior. Neuropsychologia, 12, 323–330.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., Herscovitch, P., Mintun, M., Martin, W. R., & Powers, W. (1984). Dynamic measurements in the study of higher cortical function in humans with positron emission tomography. Annals of Neurology, 15(Suppl.), S48.

    Article  PubMed  Google Scholar 

  • Reul, J. M. H. M., & De Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 2505–2511.

    Article  PubMed  Google Scholar 

  • Reus, V. I. (1984). Hormonal mediation of the memory disorder in depression. Drug Development Research, 4, 489–500.

    Article  Google Scholar 

  • Roozendaal, B., & McGaugh, J. L. (1996). Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiology of Learning and Memory, 65, 1–8.

    Article  PubMed  Google Scholar 

  • Roozendaal, B., & McGaugh, J. L. (1997a). Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiology of Learning and Memory, 67, 176–179.

    Article  PubMed  Google Scholar 

  • Roozendaal, B., & McGaugh, J. L. (1997b). Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. European Journal of Neuroscience, 9, 76–83.

    Article  PubMed  Google Scholar 

  • Shiosaka, S. (1992). Attempts to make models for Alzheimer’s disease [Review]. Neuroscience Research, 13, 237–255.

    Article  PubMed  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis of findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.

    Article  PubMed  Google Scholar 

  • Starkman, M. N., Schteingart, D. E., & Schork, M. A. (1986). Cushing’s syndrome after treatment: Changes in cortisol and ACTII levels, and amelioration of the depressive syndrome. Psychiatry Research, 19, 177–188.

    Article  PubMed  Google Scholar 

  • Stone, W. S., Cotrill, K. L., Walker, D. L., & Gold, P. E. (1988). Blood glucose and brain function: Interactions with CNS cholinergic systems. Behavioral Neural Biology, 50(3), 325–334.

    Article  PubMed  Google Scholar 

  • Storandt, M., & Hill, R. D. (1989). Very mild senile dementia of the Alzheimer’s type II. Psychometric test performance. Archives of Neurology, 46, 383–386.

    Article  PubMed  Google Scholar 

  • Tierney, M. C., Snow, W. G., Reid, D., Zorzitto, M. L., & Fisher, R. H. (1987). Psychometric differentiation of dementia: Replication and extension of the findings of Stroandt and coworkers. Archives of Neurology, 44, 720–722.

    Article  PubMed  Google Scholar 

  • Woolley, C. S., Gould, E., Frankfurt, M., & McEwen, B. S. (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. Journal of Neuroscience, 10, 4035–4039.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Craft, S., Newcomer, J. (2001). Cognitive Neuroendocrinology. In: Tarter, R.E., Butters, M.A., Beers, S.R. (eds) Medical Neuropsychology. Critical Issues in Neuropsychology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1287-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1287-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5479-6

  • Online ISBN: 978-1-4615-1287-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics