Inhalation Exposures in Residences

  • Scott Baker
  • Jeffrey Driver
  • David McCallum

Abstract

We are in our homes about 60 percent of the time (USEPA 1996), and in other homes and buildings an additional 25 percent of the time. Clearly, then, the air we breathe in residences makes up the majority of our total intake. If the air in our homes were “clean” (unpolluted), this perhaps would not matter greatly—but the fact is, our home air is generally “dirtier” than the outdoor air, because our consumer products, building materials, and personal activities such as smoking add to the pollutants entering our homes from outside. This is true for scores and probably hundreds of agents that may be harmful to our health.

Keywords

Ozone Lignin Hydrocarbon Gasoline Cyclone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AAAAI (American Academy of Allergy, Asthma, and Immunology). 1994. National Allergy Bureau Pollen and Mold Report. Milwaukee, Wisconsin.Google Scholar
  2. AAAAI (American Academy of Allergy, Asthma, and Immunology). 1995. National Allergy Bureau Pollen and Mold Report. Milwaukee, Wisconsin.Google Scholar
  3. Akland, G., T.D. Hartwell, T.R. Johnson, and R. Whitmore. 1985. Measuring human exposure to carbon monoxide in Washington, DC and Denver, CO during the winter of 1982-83. Environ. Sci. Technol. 19:911–918.CrossRefGoogle Scholar
  4. Albrecht, E. and A. Kaul. 1967. Continuous registration of 222Rn in air varying with time. Pages 643–650 in: Assessment of airborne radioactivity in nuclear operations. International Atomic Energy Agency. Vienna, Austria.Google Scholar
  5. Andelman, J.B. 1985a. Human exposures to volatile halogenated organic chemicals in indoor and outdoor air. Environ. Health Perspect. 62:313–318.CrossRefGoogle Scholar
  6. Andelman, J.B. 1985b. Inhalation exposure in the home to volatile organic contaminants of drinking water. Sci. Total Environ. 47:443–460.CrossRefGoogle Scholar
  7. Andelman, J.B. 1990. Total exposure to volatile organic compounds in potable water. Chapter 20 in: Ram, N.M., R.F. Christman, and K.P. Cantor (eds.). Significance and treatment of volatile organic compounds in water supplies. Lewis Publishers. Chelsea, Michigan.Google Scholar
  8. Andersen, A.A. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 76:471–484.Google Scholar
  9. Arizmendi, C.M., J.R. Sanchez, N.E. Ramos, and G.I. Ramos. 1993. Time series predictions with neural nets: application to airborne pollen forecasting. Internat. J. Biometeorol. 37:139–144.CrossRefGoogle Scholar
  10. Arnow, P.M., D. Weil, and M.F. Para. 1985. Prevalence and significance of Legionella pneumophila contamination of residential hot-tap water systems. J. Infect. Dis. 152:145.CrossRefGoogle Scholar
  11. Ashley, D.L., M.A. Bonin, L. Carkinali, J.M. McGraw, and J.V. Wooten. 1994. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin. Chem. 40:1401–1404.Google Scholar
  12. Barkley, J., J. Bunch, J.T. Bursey, N. Castillo, S.D. Cooper, J.M. Davis, M.D. Erickson, B.S.H. Harris III, M. Kirkpatrick, L. Michael, S.P. Parks, E. Pellizri, M. Ray, D. Smith, K. Tomer, R. Wagner, and R.A. Zweidenger. 1980. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment-a multimedia environmental study. Biomed. Mass Spectrometry. 7(4): 139–147.CrossRefGoogle Scholar
  13. Berglund, B., I. Johansson, and T. Lindvall. 1982a. A longitudinal study of air contaminants in a newly built preschool. Environ. Internat. 8:111–115.CrossRefGoogle Scholar
  14. Berglund, B., I. Johansson, and T. Lindvall. 1982b. The influence of ventilation on indoor/outdoor air contaminants in an office building. Environ. Internat. 8:395–399.CrossRefGoogle Scholar
  15. Berglund, B., I. Johansson, and T. Lindvall. 1987. Volatile organic compounds from building materials in a simulated chamber study. Pages 16–21 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  16. Bourdillon, R.B., O.M. Lidwell, and J.C. Thomas. 1941. A slit sampler for collecting and counting airborne bacteria. J. Hyg. (Camb). 14:197–224.CrossRefGoogle Scholar
  17. Breysse, PA. 1984. Formaldehyde levels and accompanying symptoms associated with individuals residing in over 1,000 conventional and mobile homes in the State of Washington. Pages 403–08 in: Berglund, B. T. Lindvall, and J. Sundell (eds.). Indoor Air Sensory and Hyperactivity Reactions to Sick Buildings. Volume 3. Swedish Council for Building Research. Stockholm, Sweden.Google Scholar
  18. Bridge, D.P. and M. Corn. 1972. Contribution to the assessment of exposure of nonsmokers to air pollution from cigarette and cigar smoke in occupied spaces. Environ. Res. 5:192–209.CrossRefGoogle Scholar
  19. Brief, R.S. 1960. A simple way to determine air contaminants. Air Engineering. 2:39–51.Google Scholar
  20. Brown, V.M. and D.R. Crump. 1996. Volatile organic compounds. In: Berry, R.W., V.M. Brown, S.K.D. Coward, D.R. Crump, M. Gavin, C.P Grimes, D.F Higham, A.V Hull, C.A. Hunter, I.G Jeffery, R.G. Lea, J.W Llewellyn, and G.J. Raw (eds.). Indoor air quality in homes: Part I. The building research establishment indoor environment study. Construction Research Communications. London, United Kingdom.Google Scholar
  21. Busigin, A., A.W. Van der Vooren, J.C. Babcock, and C.R. Phillips. 1981. The nature of unattached 218Po (RaA) particles. Health Phys. 40:333–343.CrossRefGoogle Scholar
  22. Buttner, M.P. and L.D. Stetzenbach. 1991. Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Appl. Environ. Microbiol. 57:1268–1270.Google Scholar
  23. Cartwright, B.G. and E.K. Shirk. 1978. A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Instrum. Meth. 153:457–60.CrossRefGoogle Scholar
  24. Cheng, Y.S. and H.C. Yeh. 1980. Theory of a screen-type diffusion battery. J. Aerosol Sci. 11:313–320.CrossRefGoogle Scholar
  25. Cheng, Y.S., J.A. Keating, and G.M. Kanapilly. 1980. Theory and calibration of a screen-type diffusion battery. J. Aerosol Sci. 11:549–556.CrossRefGoogle Scholar
  26. Chew, G.L., H.A. Burge, D.W Dockery, M.L. Muilenberg, ST Weiss, and D.R. Gold. 1998. Limitations of a home characteristics questionnaire as a predictor of indoor allergen levels. Amer. J. Resp. Crit. Care Med. In press.Google Scholar
  27. Chu, K.D. and PK. Hopke. 1985. Continuous monitoring method of the neurtralizing phenomena of Polonium-218. Presented at the 78th Annual Meeting of the Air Pollution Control Association. June. Detroit, Michigan. Paper Number 85-85.5. Air Pollution Control Association. Pittsburgh, Pennsylvania.Google Scholar
  28. Chu, K.D. and PK. Hopke. 1988. Neutralization kinetics for polonium-218. Environ. Sci. Technol. 22:711–717.CrossRefGoogle Scholar
  29. Clayton, C.A., R.L. Perritt, E.D. Pellizzari, K.W Thomas, R.W Whitmore, H. Özkaynak, J.D. Spengler, and L.A. Wallace. 1993. Particle total exposure assessment methodology (PTEAM) study: Distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a Southern California community. J. Exposure Anal. Environ. Epidemiol. 3:227–250.Google Scholar
  30. Coburn, R.F., R.E. Forster, and PB. Kane. 1965. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J. Clin. Invest. 43:1098–1103.CrossRefGoogle Scholar
  31. Cohen, B.L. and R. Nason. 1986. A diffusion barrier charcoal adsorption collector for measuring Rn concentrations in indoor air. Health Phys. 50:457–463.CrossRefGoogle Scholar
  32. Colome, S.D., A.L. Wilson, and Y. Tian. 1994. California residential indoor air quality study. Volume 2: Carbon monoxide and air exchange rate: a univariate and multivariate analysis. Integrated Environmental Services. Irvine, California. 200 pages.Google Scholar
  33. Colome, S.D., A.L. Wilson, E.W Becker, S.J. Cunningham, and P.E. Baker. 1987. Analysis of factors associated with indoor residential nitrogen dioxide: multivariate regression results. Pages 405–409 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air. August 17-21. Volume 1. Institute for Water, Soil, and Air Hygiene. Berlin (West).Google Scholar
  34. Countess, R.J. 1970.222Rn flux measurement with a charcoal canister. Health Phys. 31:455–456.Google Scholar
  35. Coutant, R.W., R.G. Lewis, and J. Mulik. 1985. Passive sampling devices with reversible adsorption. Anal. Chem. 57:219–223.CrossRefGoogle Scholar
  36. Coutant, R.W., R.G. Lewis, and J. Mulik. 1986. Modification and evaluation of a thermally desorbable passive sampler for volatile organic compounds in air. Anal. Chem. 58:445–448.CrossRefGoogle Scholar
  37. Crook, B. 1997. Non-inertial samplers: Biological perspectives. Pages 269–284 in: Cox, C.S. and CM. Wathes.Bioaerosols Handbook. CRC/Lewis Press. Boca Raton, Florida.Google Scholar
  38. De Bortoli, M., H. Knöppel, E. Pecchio, A. Peil, L. Rogora, H. Schauenburg, H. Schlitt, and H. Vissers. 1986.Concentrations of selected organic pollutants in indoor and outdoor air in northern Italy. Environ.Internat. 12(l-4):343–350.CrossRefGoogle Scholar
  39. Delfino, R.J., B.D. Coate, R.S. Zeiger, J.M. Seltzer, D.H. Street, and P. Koutrakis. 1996. Daily asthma severity in relation to personal ozone exposure and outdoor fungal spores. Am. J. Respir. Crit. Care Med.154:633–641.Google Scholar
  40. Diemel, J.A.L., B. Brunekreef, J.S.M. Boleij, K. Biersteker, and S.J. Veenstra. 1981. The Arnhem lead study:II. Indoor pollution and indoor-outdoor relationships. Environ. Res. 25:449–456.CrossRefGoogle Scholar
  41. Dietz, R.N. and E.A. Cote. 1982. Air infiltration measurements in a home using a convenient perfluorocarbon tracer technique. Environ. Int. 8:419–33.CrossRefGoogle Scholar
  42. Dockery, D. and J. Spengler. 1981a. Indoor-outdoor relationships of respirable sulfates and particulates. Atmos.Environ. 15:335–343.CrossRefGoogle Scholar
  43. Dockery, D.W. and J.D. Spengler. 1981b. Personal exposure to respirable particulates and sulfates. JAPCA 31(2):153–159.Google Scholar
  44. Dowty, B., D. Carlisle, J.L. Laseter, and J. Storer. 1975. Halogenated hydrocarbons in New Orleans drinking water and blood plasma. Science 187:75–77.CrossRefGoogle Scholar
  45. Dua, S.K., P. Kotrappa, and PC. Gupta. 1983. Influence of relative humidity on the charged fraction of decay products of radon and thoron. Health Phys. 45:152–157.Google Scholar
  46. Duan, N. 1982. Models for human exposure to air pollution. Environ. Internat. 8:305–309.CrossRefGoogle Scholar
  47. Duan, N. 1985. Application of the microenvironment monitoring approach to assess human exposure to carbon monoxide. Rand Corporation. Report R-322-EPA. Santa Monica, California. 50 pages.Google Scholar
  48. Duan, N. 1991. Stochastic microenvironment models for air pollution exposure. J. Exposure Anal. Environ.Epidemiol. 2:235–257.Google Scholar
  49. EML (Environmental Measurements Laboratory). 1990. Procedures Manual. 27th Edition. Report Number HASL-300. U.S. Department of Energy. November. New York, New York.Google Scholar
  50. Fantini, M. and G. Renard. 1981. Influence of chemical and physical parameters on the quality and reproducibility of tracks in cellulose nitrate films. Pages 193–196 in: Fowler, PH. and V.M. Clapham (eds.).Solid state nuclear track detectors. Pergamon Press. Oxford, United Kingdom.Google Scholar
  51. Fellin, P. and R. Otson. 1993. Seasonal trends of volatile organic compounds (VOCs) in Canadian homes. Pages 339–343 in: Jaakola, J.J.K., R. Ilmarinen, and O. Seppänen (eds.). Indoor Air ’93: Proceedings of the 6th International Conference on Indoor Air Quality and Climate. Volume 1. Helsinki University of Technology. Espoo, Finland.Google Scholar
  52. Frey, G.J., P.K. Hopke, and J.J. Stukel. 1981. The effects of trace gases and water vapor on the diffusion coefficient of Po-218. Science 211:480–481.CrossRefGoogle Scholar
  53. George, A.C. 1972. Measurement of the uncombined fraction of radon daughters with wire screens. Health Phys. 23:390–392.CrossRefGoogle Scholar
  54. George, A.C. 1976. Scintillation Flasks for the Determination of Low Level Concentrations of Radon. Presentation by the Health and Safety Laboratory, U.S. Department of Energy, at the Ninth Midyear Health Physics Symposium. February. Denver, Colorado.Google Scholar
  55. George, A.C. 1977. A passive environmental radon monitor. Pages 25–30 in: Breslin, A.J. (ed.). Radon Workshop. February. Health and Safety Laboratory, U.S. Department of Energy. HASL-325. New York, New York.Google Scholar
  56. George, A.C. 1984. Passive integrated measurement of indoor radon using activated carbon. Health Phys.46:867–872.CrossRefGoogle Scholar
  57. George, A.C. and A.J. Breslin. 1980. The distribution of ambient radon and radon daughters in residential buildings in the New Jersey-New York area. Page 1272 in: National Radiation Environment III. Volume 2. Technical Information Center, U.S. Department of Energy. CONF-780422. Washington, D.C.Google Scholar
  58. George, A.C. and T. Weber. 1990. An improved passive activated C collector for measuring environmental 222Rn in indoor air. Health Phys. 58:583–589.CrossRefGoogle Scholar
  59. George, A.C., M.H. Wilkening, E.O. Knutson, D. Sinclair, and L. Andrews. 1984. Measurements of radon and radon daughter aerosols in Socorro, New Mexico. Aerosol Sci. Technol. 3:277–281.CrossRefGoogle Scholar
  60. Giardino, N.J., E. Gumerman, N.A. Esmen, J.B. Andelman, C.R. Wilkes, and M.J. Small. 1990. Real-time air measurements of trichloroethylene in domestic bathrooms using contaminated water. Pages 707–712 in:Walkinshaw, D. (ed.). Indoor Air ’90: Proceedings of the 5th international conference on indoor air quality and climate. July 29-August 3. Volume 2. Toronto, Canada. Canada Mortgage and Housing Association. Ottawa, Ontario.Google Scholar
  61. Girman, AT., Hodgson, A.W. Newton, and A.W. Winkes. 1986. Volatile organic emissions from adhesives with indoor applications. Environ. Internat. 12(1-4):317–321.CrossRefGoogle Scholar
  62. Girman, J.R., L. Alivantis, G. Kullasingam, M. Petreas, and L. Webber. 1987a. Bake-out of an office building. Pages 22–26 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  63. Girman, J.R., A.T. Hodgson, and M.L. Wind. 1987b. Considerations in evaluating emissions from consumer products. Atmos. Environ. 21:315–320.CrossRefGoogle Scholar
  64. Girman, J.R. and A.T. Hodgson. 1987. Exposure to methylene chloride from controlled use of a paint remover in a residence. Presented at the 80th Annual Meeting of the Air Pollution Control Association. June 21-26. New York. Report Number LBL 23078. Lawrence Berkeley Laboratory. Berkeley, California.Google Scholar
  65. Goldstein, B.D., R.J. Melia, S. Chinn, C.V. Florey, D. Clark, and H.H. John. 1979. The relationship between respiratory illness in primary school children and the use of gas for cooking: II. Factors affecting nitrogen dioxide levels in the home. Internat. J. Epidemiol. 8(4):339–345.CrossRefGoogle Scholar
  66. Goldstein, B.D., R.G Tardiff, S.R. Baker, G.F. Hoffnagle, D.R. Murray, P.A. Catizone, R.A. Kester, and D.G. Caniparoli. 1992. Valdez Air Health Study. Alyeska Pipeline Service Company. Anchorage, Alaska.Google Scholar
  67. Goldstein, S.D. and P.K. Hopke. 1985. Environmental neutralization of polonium-218. Environ. Sci. Technol. 19:146–150.CrossRefGoogle Scholar
  68. Gordon, S.M., D.V. Kenny, and T.J. Kelly. 1992. Continuous real-time breath analysis for the measurement of half-lives of expired volatile organic compounds. J. Exposure Anal. Environ. Epidemiol. Suppl. 1:41–54.Google Scholar
  69. Gray, D.J. and S.T. Windham. 1987. EERF standard operating procedures for radon-222 measurement using charcoal canisters. U.S. Environmental Protection Agency. Report Number EPA 520/5-87-005. Washington, D.C. 30 pages.Google Scholar
  70. Guerin, M.R., C.E. Higgins, and R.A. Jenkins. 1987. Measuring environmental emissions from tobacco combustion: sidestream cigarette smoke literature review. Atmos. Environ. 21:291–297.CrossRefGoogle Scholar
  71. Gundel, L.A., V.C. Lee, K.R.R. Mahanama, R.K. Stevens, and J.M. Daisey. 1995. Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmos. Environ. 29(14):1719–1733.CrossRefGoogle Scholar
  72. Hartwell, T.D., C.A. Clayton, R.W Michie, R.W. Whitmore, H.S. Zelon, S.M. Jones, and D.A. Whitehurst. 1984. Study of carbon monoxide exposure of residents of Washington, DC and Denver, CO. Report Number EPA-600/S4-84-031, PB84-183516. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency. Research Triangle Park, North Carolina.Google Scholar
  73. Hartwell, T.D., C.A. Clayton, R.W. Michie, R.W. Whitmore, H.S. Zelon, S.M. Jones, and D.A. Whitehurst. 1986. Study of carbon monoxide exposure of residents of Washington, DC and Denver, CO. EPA-600/S4-84-031, PB84-183516. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency. Research Triangle Park, North Carolina.Google Scholar
  74. Higgins, C.E., R.R. Jenkins, and M.R. Guerin. 1983. Application of Tenax trapping to cigarette smoking. JAOAC 66:1074–1083.Google Scholar
  75. Higgins, C.E. 1987. Organic vapor phase composition of sidestream and environmental tobacco smoke from cigarettes. Pages 140–151 in: Proceedings of the 1987 EPA/APCA Symposium on Measurement of Toxic and Related Air Pollutants. EPA Report Number 600/9-87-010. Research Triangle Park, North Carolina. May.Google Scholar
  76. Highsmith, V.R., R.B. Zweidenger, and R.G. Merrill. 1988. Characterization of indoor and outdoor air associated with residences using woodstoves: a pilot study. Environ. Internat. 14:213–219.CrossRefGoogle Scholar
  77. Hirst, J.M. 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39:257–265.CrossRefGoogle Scholar
  78. Hocking, A.D. and J.I. Pitt. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from lowmoisture foods. Appl. Environ. Microbiol. 39:488–492.Google Scholar
  79. Hodgson, A.T., J.R. Girman, and J. Binenboym. 1986. A multi-sorbent sampler for volatile organic compounds in indoor air. Presented at the 79th Annual Meeting of the Air Pollution Control Association. June. Minneapolis, Minnesota. APCA Paper Number 86–37.1. Pittsburgh, Pennsylvania.Google Scholar
  80. Hodgson, A.T.K., Garbesi, R.G. Sextro, and J.M. Daisey. 1988. Evaluation of soil-gas transport of organic chemicals into residential buildings: Final report. Lawrence Berkeley Laboratory. Report Number LBL-25465. Berkeley, California. 100 pages.Google Scholar
  81. Hollowell, CD. and R.R. Miksch. 1981. Sources and concentrations of organic compounds in indoor environments. Bull. N.Y. Acad. Med. 57(10):962–977.Google Scholar
  82. Holub, R.F. and E.O. Knutson. 1987. Measuring polonium-218 diffusion-coefficient spectra using multiple wire screens. Pages 340–356 in: Hopke, P.K. (ed.). Radon and its decay products: Occurrence, properties and health effects. Symposium Series 331. American Chemical Society. Washington, D.C.CrossRefGoogle Scholar
  83. Hopke, RK. 1989. Use of electrostatic collection of 218Po for measuring Rn. Health Phys. 57:39–42.CrossRefGoogle Scholar
  84. Hopke, RK. 1992. Some thoughts on the “unattached” fraction of radon decay products. Health Phys.63(2):209–212.CrossRefGoogle Scholar
  85. Hopke, P.K., B. Jensen, C.S. Li, N. Montassier, and P. Wasiolek. 1995. Assessment of the exposure to and dose from radon decay products in normally occupied homes. Environ. Sci. Technol. 29:1359–1364.CrossRefGoogle Scholar
  86. Hopke, P.K., M. Ramamurthi, E.O. Knutson, K.W. Tu, P. Scofield, R.F. Holub, Y.S. Cheng, Y.F. Su, W.Winklmayr, J.C. Strong, S. Solomon, and A. Reineking. 1992. The measurement of activity-weighted size distribution of radon progeny: methods and laboratory intercomparison studies. Health Phys.63(5):560–570.CrossRefGoogle Scholar
  87. Immerman, F.W. 1989. Nonoccupational pesticide exposure study (NOPES). Final Summary Report. U.S.Environmental Protection Agency. Contract Number. 68-02-4544. Research Triangle Park, North Carolina.Google Scholar
  88. Immerman, F.W. and J.L. Schaum. 1990a. Nonoccupational pesticide exposure study: Final report. EPA/600-3-90-003. U.S. Environmental Protection Agency. Washington, D.C.Google Scholar
  89. Immerman, F.W. and J.L. Schaum. 1990b. Nonoccupational pesticide exposure study (NOPES). Project summary. U.S. Environmental Protection Agency. EPA 600/S3-90/003. Research Triangle Park, North Carolina.Google Scholar
  90. Ingram, J.M., R. Sporik, G. Rose, R. Honsigner, M. Chapman, and T.A.E. Platts-Mills. 1995. Quantitative assessment of exposure to dog (Can f 1) and cat (Fel d 1) allergens: Relation to sensitization and asthma among children living in Los Alamos, New Mexico. J. Allergy Clin. Immunol. 96(4):449–456.CrossRefGoogle Scholar
  91. Ishizu, Y. 1980. General equation for the estimation of indoor pollution. Environ. Sci. Technol.14(10):1254–1257.CrossRefGoogle Scholar
  92. James, A.C., G.F. Bradford, and D.M. Howell. 1972. Collection of unattached RaA atoms using wire gauge.J. Aerosol Sci. 3:243–250.CrossRefGoogle Scholar
  93. Jarke, F.H. and S.M. Gordon. 1981. Recent investigations of volatile organics in indoor air at sub-ppb levels.Presented at the 74th Annual Meeting of the Air Pollution Control Association. June. Paper Number 81–57.2. Pittsburgh, Pennsylvania.Google Scholar
  94. Jermini, C., A. Weber, and E. Grandjean. 1976. Quantitative determination of various gas-phase components of the sidestream smoke of cigarettes in room air. Internat. Arch. Occup. Environ. Health (German).36:169–181.CrossRefGoogle Scholar
  95. Jo, W.K., C.P. Weisel, and P.J. Lioy. 1990a. Routes of chloroform exposure and body burden from showering with contaminated tap water. Risk Anal. 10:575–580.CrossRefGoogle Scholar
  96. Jo, W.K., C.P. Weisel, and P.J. Lioy. 1990b. Chloroform exposure and the health risk associated with multiple uses of chlorinated tap water. Risk Anal. 10:581–585.CrossRefGoogle Scholar
  97. Johansson, I. 1978. Determination of organic compounds in indoor air with potential reference to air quality.Atmos. Environ. 12:1371–1377.CrossRefGoogle Scholar
  98. Johnson, T. 1983. A study of personal exposures to carbon monoxide in Denver, Colorado. Final report.Contract Number 68-02-3755. U.S. Environmental Protection Agency. Research Triangle Park, North Carolina.Google Scholar
  99. Johnson, T., J. Capel, and L. Wijnberg. 1986. Selected data analyses relating to studies of personal carbon monoxide exposure in Denver and Washington, DC. Final report. Contract Number 68-02-3496. U.S.Environmental Protection Agency. Research Triangle Park, North Carolina.Google Scholar
  100. Joly, J.R., E. Dewaily, L. Bernard, D. Ramsey, and J. Brisson. 1986. Legionella and domestic water heaters in Quebec City area. Can. Med. Assoc. J. 132:160.Google Scholar
  101. Jones, R.M. and R. Fagan. 1974. Application of mathematical model for the buildup of carbon monoxide from cigarette smoking in rooms and houses. ASHRE Journal 16:49–53.Google Scholar
  102. Jones, W, K. Morring, P. Morey, and W. Sorenson. 1985. Evaluation of the Andersen viable impactor for single stage sampling. AIHA Journal 46:294–298.CrossRefGoogle Scholar
  103. Kleipis, N.E., WR. Ott, and P. Switzer. 1995. Modeling the time series of respirable suspended particles and carbon monoxide from multiple smokers: Validation in two public smoking lounges. Presented at the 88th Annual Meeting of the Air and Waste Management Association. June. Paper Number A-1233. Air and Waste Management Association. Pittsburgh, Pennsylvania.Google Scholar
  104. Knöppel, H. and H. Schauenburg. 1987. Screening of household products for the emission of volatile organic compounds. Pages 27–31 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Water, Soil, and Air Hygiene. Berlin (West).Google Scholar
  105. Knutson, E.O. 1989. Personal computer programs for use in radon and thoron progeny measurements. Report Number EML-517. Environmental Measurements Laboratory, U.S. Department of Energy. New York,New York.Google Scholar
  106. Knutson, E.O., A.C. George, R.H. Knuth, and B.R. Koh. 1984. Measurements of radon daughter particle size. Radiat. Prot. Dosim. 7:121–125.Google Scholar
  107. Kotrappa, P., J.C. Dempsey, J.R. Hickey, and L.R. Steiff. 1988. A practical E-PERMÔ (electret passive environmental radon monitor) system for indoor 222Rn measurements. Health Phys. 54:47–56.CrossRefGoogle Scholar
  108. Koutrakis, P., S.L.K. Briggs, and B.P. Leaderer. 1992. Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York. Environ. Sci. Technol. 26:521–527.CrossRefGoogle Scholar
  109. Krause, C, W. Mailahn, R. Nagel, C. Schulz, B. Seifert, and D. Ullrich. 1987. Occurrence of volatile organic compounds in the air of 500 homes in the Federal Republic of Germany. Pages 102–106 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  110. Krost, K.J., E.D. Pellizari, S.G. Walburn, and S.A. Hubbard. 1982. Collection and analysis of hazardous organic emissions. Anal. Chem. 54:810–817.CrossRefGoogle Scholar
  111. Leaderer, B.P. and S.K. Hammond. 1991. Evaluation of vapor-phase nicotine and respirable suspended particle mass as markers for environmental tobacco smoke. Environ. Sci. Technol. 25:770–777.CrossRefGoogle Scholar
  112. Leaderer, B.P., W.S. Cain, R. Isserof, and L.G. Berglund. 1984. Ventilation requirements in buildings-II. Particulate matter and carbon monoxide from cigarette smoking. Atmos. Environ. 18:99–106.CrossRefGoogle Scholar
  113. Lebret, E., H.J. Van de Weil, D. Noij, and J.S.M. Boleij. 1986. Volatile hydrocarbons in Dutch homes. Environ. Internat. 12(l-4):323–332.CrossRefGoogle Scholar
  114. Lewis, R.G. and A.E. Bond. 1987. Nonoccupational exposure to household pesticides. Pages 195–199 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  115. Lewis, R.G. and K.E. MacLeod. 1982. A portable sampler for pesticides and semivolatile industrial organic chemicals in air. Anal. Chem. 54:310–315.CrossRefGoogle Scholar
  116. Lewis, R.G., J.D. Mulik, R.W Coutant, G.W. Wooten, and C.R. McMillan. 1985. Thermally desorbable passive sampling device for volatile organic chemicals in ambient air. Anal. Chem. 57:214–219.CrossRefGoogle Scholar
  117. Lioy, P.J., J.M. Waldman, T. Buckley, J. Butler, and C. Pietarinen. 1990. The personal, indoor and outdoor concentrations of PM-10 measured in an industrial community during the winter. Atmos. Environ. 24:57–66.CrossRefGoogle Scholar
  118. Löfroth, G., B. Burton, L. Forehand, S.K. Hammond, R. Seila, R. Zweidenger, and J. Lewtas. 1989. Characterization of environmental tobacco smoke. Environ. Sci. Technol. 23:610–614.CrossRefGoogle Scholar
  119. Lucas, H.F. 1957. Improved low-level alpha scintillation counter for radon. Rev. Sci. Instr. 28:258–259.CrossRefGoogle Scholar
  120. Madelin, T.M. and M.F. Madelin. 1997. Biological analysis of fungi and associated molds. Pages 361–386 in: Cox, C.S. and C.M. Wathes. Bioaerosols Handbook. CRC/Lewis Press. Boca Raton, Florida.Google Scholar
  121. Mailahn, W., B. Siefert, and D. Ullrich. 1987. The use of a passive sampler for the simultaneous determination of long-term ventilation rates and VOC concentrations. Pages 149–153 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  122. Marcinowski, F. 1992. Nationwide survey of residential radon levels. Health Phys. 62(6):S13 (Supplement).Google Scholar
  123. Marple, V.A., K.L. Rubow, W. Turner, and J.D. Spengler. 1987. Low flow rate sharp cut impactors for indoor air sampling: Design and calibration. JAPCA 37:1303–1307.CrossRefGoogle Scholar
  124. McKone, T.E. 1987. Human exposure to volatile organic compounds in household tap water: The indoor inhalation pathway. Environ. Sci. Technol. 21:1194–1201.CrossRefGoogle Scholar
  125. Milton, D., R. Gere, H. Feldman, and I. Greaves. 1990. Endotoxin measurement aerosol sampling and application of a new Limulus method. AIHA Journal 51:331–337.CrossRefGoogle Scholar
  126. Milton, D.K., H.A. Feldman, D.S. Neuberg, R.J. Bruckner, and I.A. Greaves. 1992. Environmental endotoxin measurement: The kinetic Limulus assay with resistant-parallel line estimation. Environ. Res. 57:212–230.CrossRefGoogle Scholar
  127. Molhave, L. 1982. Indoor air pollution due to organic gases and vapours of solvents in building materials. Environ. Internat. 5(1-6): 117–127.CrossRefGoogle Scholar
  128. Molhave, L. and J. Moller. 1979. The atmospheric environment in modern Danish dwellings: Measurements in 39 flats. Pages 171–186 in: Fänger, O. and O. Valbjõrn (eds.). Indoor Climate. SBI. Hõrsholm, Denmark.Google Scholar
  129. Nazaroff, W.W. 1984. Optimizing the total-alpha three-count technique for measuring concentrations of radon progeny in residences. Health Phys. 24:387–395.Google Scholar
  130. Nazaroff, W.W. and G.R. Cass. 1989. Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Technol. 23:157–166.CrossRefGoogle Scholar
  131. Nazaroff, W.W., L.G. Salmon, and G.R. Cass. 1990a. Concentration and fate of airborne particles in museums. Environ. Sci. Technol. 24:66–77.CrossRefGoogle Scholar
  132. Nazaroff, W.W., M.P. Ligocki, T. Ma, and G.R. Cass. 1990b. Particle deposition in museums: Comparison of modeling and measurement results. Aerosol Sci. Technol. 13:332–348.CrossRefGoogle Scholar
  133. Nazaroff, W.W., AJ. Gadgil, C.J. Weschler. 1993. Critique of the use of deposition velocity in modeling indoor air quality. Pages 81–104 in: Nagda, N.L. (ed.). Modeling of indoor air quality and exposure. ASTM STP 1205. American Society for Testing and Materials. Philadelphia, Pennsylvania.Google Scholar
  134. Neas, L.M., D.W. Dockery, J.H. Ware, J.D. Spengler, B.G. Ferris, Jr., and F.E. Speizer. 1994. Concentration of indoor particulate matter as a determinant of respiratory health in children. Am. J. Epidemiol. 139:1088–1099.Google Scholar
  135. Neas, L.M., D.W. Dockery, H. Burge, P. Koutrakis, and F.E. Speizer. 1996. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am. J. Epidemiol. 143(8):797–807.CrossRefGoogle Scholar
  136. Nero, A.V. 1988. Estimated risk of lung cancer from exposure to radon decay products in U.S. homes: A brief review. Atmos. Environ. 22:2205–2211.CrossRefGoogle Scholar
  137. Nero, A.V., Schwehr, M.B., Nazaroff, W.W. and Rezvan, K.L. (1986). Distribution of airborne radon 222 concentrations in U.S. homes. Science 234:992–997.CrossRefGoogle Scholar
  138. NTP (National Toxicology Program). 1986. Technical report on the toxicity and carcinogenesis of 1,4-dichlorobenzene (CAS #106-46-7) in F344/n rats and B6C3F1 mice (gavage study). National Toxicology Program Technical Report Number 319. Board Draft. March 1986.Google Scholar
  139. NTP (National Toxicology Program). 1988. Technical report on the toxicity and carcinogenesis of d-limonine (CAS #106-46-7) in F344/n rats and B6C3F1 mice (gavage study). National Toxicology Program Technical Report Number 347. NIH Publication Number 88–2802.Google Scholar
  140. Nuchia, E. 1986. MDAC-Houston materials testing database users’ guide. National Aeronautics and Space Administration. Washington, D.C.Google Scholar
  141. Offerman, F.J., R.G. Sextro, W.J. Fisk, D.T. Grimsrud, W.W. Nazaroff, A.V. Nero, K.L. Revzan, and J. Yater. 1985. Control of respirable particles in indoor air with portable air cleaners. Atmos. Environ. 19:1761–1771.CrossRefGoogle Scholar
  142. Oliver, K.D., J.D. Pleil, and W.A. McClenny. 1986. Sample integrity of trace level volatile organic compounds in ambient air stored in summa polished canisters. Atmos. Environ. 20:1403.CrossRefGoogle Scholar
  143. Ott, W.R. 1985. Total human exposure: an emerging science focuses on humans as receptors of environmental pollution. Environ. Sci. Technol. 19:880.CrossRefGoogle Scholar
  144. Ott, W.R., J. Thomas, D. Mage, and L.Wallace. 1988. Validation of the simulation of human activity and agent exposure (SHAPE) model using paired days from the Denver, CO carbon monoxide study. Atmos. Environ. 22:2101–2113.CrossRefGoogle Scholar
  145. Ott, W.R., L. Langan, and P. Switzer. 1992. A time series model for cigarette smoking activity patterns: model validation for carbon monoxide and respirable particles in a chamber and an automobile. J. Exposure Anal. Environ. Epidemiol. 2(Suppl. 2): 175–200.Google Scholar
  146. Ott, W.R., P. Switzer, and J. Robinson. 1995a. Particle concentration inside a tavern before and after prohibition of smoking: evaluating the performance of an indoor air quality model. JAWMA 46:1120–1134.Google Scholar
  147. Ott, W.R., N.E. Kleipis, and P. Switzer. 1995b. Modeling environmental tobacco smoke in the home using transfer functions. Presented at the 88th Annual Meeting of the Air and Waste Management Association. June. Paper Number A-1043. Air and Waste Management Association. Pittsburgh, Pennsylvania.Google Scholar
  148. Özkaynak, H., P.B. Ryan, L.A. Wallace, W.C. Nelson, and J.V. Behar. 1987. Sources and emission rates of organic chemical vapors in homes and buildings. Pages 3–7 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17-21. Volume 1. Institute for Soil, Water, and Air Hygiene. Berlin (West).Google Scholar
  149. Özkaynak, H., J.D. Spengler, J. Xue, P. Koutrakis, E.D. Pellizari, and L.A. Wallace. 1993. Sources and factors influencing personal and indoor exposures to particles: Findings from the particle TEAM pilot study. Pages 457–462 in: Indoor Air ’93: Proceedings of the 6th International Conference on Indoor Air Quality and Climate. Volume 3. Helsinki, Finland.Google Scholar
  150. Özkaynak, H., J. Xue, R. Weker, D. Butler, P. Koutrakis, and J.D. Spengler. 1996a. The particle TEAM (PTEAM) study: Analysis of the data. Volume III. Final report. U.S. Environmental Protection Agency. Contract Number 68-0204544. Research Triangle Park, North Carolina. 500 pages.Google Scholar
  151. Özkaynak, H., J. Xue, J.D. Spengler, L.A. Wallace, E.D. Pellizari, and P. Jenkins. 1996b. Personal exposure to airborne particles and metals: Results from the particle TEAM study in Riverside, California. J. Exposure Anal. Environ. Epidemiol. 6:57–78.Google Scholar
  152. Palmes, E.D., A.F. Gunnison, J. DiMattio, and C. Tomczyk. 1986. Personal sampler for N02. AIHA Journal. 37:570–577.Google Scholar
  153. Pellizari, E.D. 1979. Analysis of organic air pollutants by gas chromatography and mass spectrometry. U.S. Environmental Protection Agency. Office of Research and Development. Research Triangle Park, North Carolina. 300 pages.Google Scholar
  154. Pellizzari, E.D., K. Perritt, T.D. Hartwell, L.C. Michael, R. Whitmore, R.W. Handy, D. Smith, and H. Zelon. 1987a. Total exposure assessment methodology (TEAM) study: Elizabeth and Bayonne, New Jersey; Devils Lake, North Dakota; and Greensboro, North Carolina. Volume II. U.S. Environmental Protection Agency. Washington, D.C. 800 pages.Google Scholar
  155. Pellizzari, E.D., K. Perritt, T.D. Hartwell, L.C. Michael, R. Whitmore, R.W. Handy, D. Smith, and Zelon, H. 1987b. Total exposure assessment methodology (TEAM) study: Selected communities in northern and southern California. Volume III. U.S. Environmental Protection Agency. Washington, D.C. 500 pages.Google Scholar
  156. Pellizzari, E.D., L.C. Michael, R. Perritt, D.J. Smith, T.D. Hartwell, and J. Sebestik. 1988. Comparison of indoor and outdoor toxic air agent levels in several southern California communities. Final report. Contract Number 68-02-4544. U.S. Environmental Protection Agency. Research Triangle Park, North Carolina. 500 pages.Google Scholar
  157. Pellizzari, E.D., L.C. Michael, R. Perritt, D.J. Smith, T.D. Hartwell, and J. Sebestik. 1989. Comparison of Indoor and Outdoor Toxic Air Pollutant Levels in Several Southern California communities. Final Report, Contract #68-02-4544. U.S. Environmental Protection Agency. Research Triangle Park, North Carolina.Google Scholar
  158. Pellizzari, E.D., K.W. Thomas, C.A. Clayton, R.W. Whitmore, R.C. Shores, H.S. Zelon, and R.L. Perritt. 1991. Particle total exposure assessment methodology (PTEAM): Riverside, California pilot study. Final report. Volume 1. U.S. Environmental Protection Agency. Contract Number 68-02-4544. Research Triangle Park, North Carolina. 500 pages.Google Scholar
  159. Pellizzari, E.D., K.W. Thomas, C.A. Clayton, R.W. Whitmore, R.C. Shores, H.S. Zelon, and R.L. Perritt. 1992. Particle Total Exposure Assessment Methodology (PTEAM): Riverside, California Pilot Study. Final Report. Vol. 1. EPA Contract #68-02-4544. Research Triangle Park, North Carolina.Google Scholar
  160. Platts-Mills, T.A.E., M.L. Hayden, M.D. Chapman, and S.R. Wilkins. 1986. Seasonal variation in the dust mite and grass pollen allergens in dust from the houses of patients with asthma. J. Allergy Clin. Immunol. 79:781.CrossRefGoogle Scholar
  161. Porstendörfer, J. and T.T. Mercer. 1979. Influence of electric charge and humidity upon the diffusion coefficient of radon decay products. Health Phys. 15:191–199.CrossRefGoogle Scholar
  162. Prichard, H.M. and K.A. Marien. 1985. A passive diffusion Rn-222 sampler based on activated carbon absorption. Health Phys. 48:797–803.CrossRefGoogle Scholar
  163. Quackenboss, J.J., J.D. Spengler, M.S. Kanarek, R. Letz, and C.P. Duffy. 1986. Personal exposure to nitrogen dioxide: Relationship to indoor/outdoor air quality and activity patterns. Environ. Sci. Technol. 20:775–783.CrossRefGoogle Scholar
  164. Raabe, O.G. and M.E. Wrenn. 1969. Analysis of the activity of radon daughter samples by weighted least squares. Health Phys. 17:593–605.CrossRefGoogle Scholar
  165. Ramamurthi, M. and P.K. Hopke. 1989. On improving the validity of wire screen unattached fraction daughter measurements. Health Phys. 56:189–194.CrossRefGoogle Scholar
  166. Ramamurthi, M. and P.K. Hopke. 1991. An automated, semi-continuous system for measuring indoor radon progeny activity-weighted size distributions, dp: 0.5-500 nm. Aerosol Sci. Technol. 14:82–92.CrossRefGoogle Scholar
  167. Ramamurthi, M., R. Strydom, and P.K. Hopke. 1990. Assessment of wire and tube penetration theories using a 218PoOx cluster. J. Aerosol Sci. 21:203–211.CrossRefGoogle Scholar
  168. Raunemaa, T., M. Kulmala, J.H. Saari, M. Olin, and M.H. Kulmala. 1989. Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol. Sci. Technol. 11:11–25.CrossRefGoogle Scholar
  169. Reineking, A. and J. Porstendörfer. 1986. High-volume screen diffusion batteries and a-spectroscopy for measurement of the radon daughter activity size distributions in the environment. J. Aerosol Sci. 17:873–879.CrossRefGoogle Scholar
  170. Reineking, A., K.H. Becker, and J. Porstendörfer. 1985. Measurements of the unattached fractions of radon daughters in houses. Sci. Total Environ. 45:261–270.CrossRefGoogle Scholar
  171. Reineking, A., K.H. Becker, and J. Porstendörfer. 1988. Measurement of activity size distributions of the shortlived radon daughters in the indoor and outdoor environment. Radiat. Prot. Dosim. 24:245–250.Google Scholar
  172. Repace, J.L. 1987a. Indoor concentrations of environmental tobacco smoke: Models dealing with effects of ventilation and room size. Pages 25–41 in: O’Neill, I.K., K.D. Brunnemann, B. Dodet, and D. Hoffmann (eds.). Environmental carcinogens methods of analysis and exposure measurement. Volume 9: Passive Smoking. International Agency for Research on Cancer. Lyon, France.Google Scholar
  173. Repace, J.L. 1987b. Indoor concentrations of environmental tobacco smoke: field surveys. Pages 141–162 in: O’Neill, I.K., K.D. Brunnemann, B. Dodet, and D. Hoffmann (eds.). Environmental carcinogens methods of analysis and exposure measurement. Volume 9: Passive Smoking. International Agency for Research on Cancer. Lyon, France.Google Scholar
  174. Repace, J.L. and A.H. Lowry. 1980. Indoor air pollution, tobacco smoke, and public health. Science. 208:464–472.CrossRefGoogle Scholar
  175. Repace, J.L. and A.H. Lowry. 1982. Tobacco smoke, ventilation, and indoor air quality. ASHRE Transactions. 88(Pt.l):895–914.Google Scholar
  176. Repace, J.L. and A.H. Lowry. 1985. A quantitative estimate of non-smokers’ lung cancer risk from passive smoking. Environ. Internat. 11:3–22.CrossRefGoogle Scholar
  177. Reponen, T., A. Nevalainen, M. Jantunen, M. Pellikka, and P. Kalliokosk. 1992. Normal range criteria for indoor air bacteria and fungal spores in a subarctic climate. Indoor Air 2:26–31.CrossRefGoogle Scholar
  178. Roberts, J.W., W.T. Budd, M.G. Ruby, D.E. Camann, R.C. Fortmann, R.G. Lewis, L.A. Wallace, and T.M. Spittler. 1992. Human exposure to pollutants in the floor dust of homes and offices. J. Exposure Anal. Environ. Epidemiol. l(Suppl. 1):127–146.Google Scholar
  179. Rodriguez, G.G., D. Phipps, K. Ishiguro, and H.F. Ridgeay. 1992. Use of fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:1801.Google Scholar
  180. Ryan, P. B., M.L. Soczek, J.D. Spengler, and I.H. Billick, 1988a. The Boston residential N02 characterization study: I. A preliminary evaluation of the survey methodology. JAPCA 38:22–27.CrossRefGoogle Scholar
  181. Ryan, P. B., M.L. Soczek, R.D. Treitman, J.D. Spengler, and I.H. Billick. 1988. The Boston residential N02 characterization study: II. Survey methodology and population concentration estimates. Atmos. Environ. 22:2115–2125.CrossRefGoogle Scholar
  182. Ryan, P.B., M. Schwab, and J.D. Spengler. 1992. Nitrogen dioxide exposure studies-Volume 3: Personal exposure to nitrogen dioxide in Boston: A microenvironmental approach. Gas Research Institute. Chicago, Illinois. 250 pages.Google Scholar
  183. Sakaguchi, M., S. Inouye, R. Sasaki, M. Hashimoto, C. Kobayashi, and H. Yasueda. 1996. Measurement of airborne mite allergen exposure in individual subjects. J Ref for filter cassettes and immunoassays. J. Allergy Clin. Immunol. 97(5): 1040–1044.CrossRefGoogle Scholar
  184. Santanam, S., J.D. Spengler, and P.B. Ryan. 1990. Particulate matter exposures estimated from an indoor-outdoor source apportionment study. Pages 583–588 in: Walkinshaw, D. (ed.). Indoor Air ’90: Proceedings of the 5th International Conference on Indoor Air Quality and Climate. Toronto, Canada. Volume 2. Canada Mortgage and Housing Corporation. Ottawa, Ontario.Google Scholar
  185. Saraf, A., L. Larsson, H. Burge, and D. Milton. 1997. Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by Limulus assay. Appl. Environ. Microbiol. 63(7):2554–2559.Google Scholar
  186. Schappi, G.F., C. Suphioglu, P.E. Taylor, and R.B. Knox. 1997. Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere. J. Allergy Clin. Immunol. 100(5):656–661.CrossRefGoogle Scholar
  187. Scheibel, H.G., and J. Porstendorfer. 1984. Penetration measurements for tube and screen-type diffusion batteries in the ultrafine size range. J. Aerosol Sci. 15:673–682.CrossRefGoogle Scholar
  188. SCAQMD (South Coast Air Quality Management District). 1989. In-vehicle characterization study in the South Coast air basin. Los Angeles. 100 pages.Google Scholar
  189. Schwab, M., J.D. Spengler, P.B. Ryan, S. Colome, and A.L. Wilson. 1990. Nitrogen dioxide exposure studies. Volume IV: Human exposure to nitrogen dioxide in the Los Angeles basin. Report prepared for Gas Research Institute (Chicago, Illinois) and Southern California Gas Company (Los Angeles, California).Google Scholar
  190. Seifert, B. and H.J. Abraham. 1982. Indoor air concentrations of benzene and some other aromatic hydrocarbons. Ecotoxicol. Environ. Safety. 6:190–192.CrossRefGoogle Scholar
  191. Seifert, B. and H.J. Abraham. 1983. Use of passive samplers for the determination of gaseous organic substances in indoor air at low concentration levels. Internat. J. Environ. Anal. Chem. 13:237–253.CrossRefGoogle Scholar
  192. Shair, F.H. and K.L. Heitner. 1974. Theoretical model for relating indoor pollutant concentrations to those outside. Environ. Sci Technol. 8:444–451.CrossRefGoogle Scholar
  193. Sheldon, L.S., R.W. Handy, T.D. Hartwell, R.W. Whitmore, H.S. Zelon, and E.D. Pellizari. 1988a. Indoor air quality in public buildings. Volume 1. U.S. Environmental Protection Agency. Washington, D.C. EPA 600/6-88/009a. National Technical Information Service PB 89-102511/AS. Springfield, Virginia.Google Scholar
  194. Sheldon, L.S., H.S. Zelon, J. Sickles, C. Eaton, and T. Hartwell. 1988b. Indoor air quality in public buildings. Volume 2. U.S. Environmental Protection Agency. Research Triangle Park, North Carolina. EPA 600/6-88/009b. National Technical Information Service PB 89-102511/AS. Springfield, Virginia.Google Scholar
  195. Sheldon, L.S., T.D. Hartwell, B.G. Cox, J.E. Sickles II, E.D. Pellizzari, M.L. Smith, R.L. Perritt, R.L., and S.M. Jones. 1989. An investigation of infiltration and indoor air quality. Final report. Contract No. 736-CON-BCS-85. New York State Energy Research and Development Authority. Albany, New York. 500 pages.Google Scholar
  196. Sheldon L.S., A. Clayton, B. Jones, J. Keever, R. Perritt, D. Smith, D. Whitaker, and R. Whitmore. 1992. Indoor pollutant concentrations and exposures. Contract #A833-156. Final report. California Air Resources Board, Sacramento, California.Google Scholar
  197. Sigsby, J.E., S.B. Tejada, W.D. Ray, J.M. Lang, and J.D. Duncan. 1987. Volatile organic compound emissions from 46 in-use passenger cars. Environ. Sci. Technol. 21-466–475.CrossRefGoogle Scholar
  198. Sinclair, J.D., A.C. George, and E.O. Knutson. 1977. Application of diffusion batteries to measurement of sub-micron radioactive aerosols. Pages 103–114 in: Airborne Radioactivity. American Nuclear Society. Lagrange Park, Illinois.Google Scholar
  199. Sinclair, J.D., L.A. Psota-Kelty, and C.J. Weschler. 1988. Indoor/outdoor ratios and indoor surface accumulations of ionic substances at Newark, New Jersey. Atmos. Environ. 22:461–469.CrossRefGoogle Scholar
  200. Sinclair, J.D., L.A. Psota-Kelty, C.J. Weschler, and H.C. Shields. 1990. Measurement and modeling of airborne concentrations and indoor surface accumulation rates of ionic substances at Neenah, Wisconsin. Atmos. Environ. 24A:627–638.Google Scholar
  201. Sinclair, J.D., L.A. Psota-Kelty, G.A. Peins, and A.O. Ibidunni. 1992. Indoor-outdoor relationships of airborne ionic substances: Comparison of electronic equipment room and factory environments. Atmos. Environ. 26A:871–882.Google Scholar
  202. Skov, P., O. Valbjõra, B.V. Pedersen, and Danish Indoor Climate Study Group. 1990. Influence of indoor climate on the sick building syndrome in an office environment. Scand. J. Work Environ. Health. 15:286–295.CrossRefGoogle Scholar
  203. Solomon, S. and T. Ren. 1992. Counting efficiencies for alpha particles emitted from wire screens. Aerosol Sci. Technol. 17:69–83.CrossRefGoogle Scholar
  204. Solomon, W.R. 1976. Volumetric studies of aeroallergen prevalence. I. Pollens of weedy spores at a midwestern station. J. Allergy Clin. Immunol. 57(4):318–327.CrossRefGoogle Scholar
  205. Solomon, W.R., H.A. Burge, and M.L. Muilenberg. 1983. Allergen carriage by atmospheric aerosol. I. Ragweed pollen determinants in smaller micronic fractions. J. Allergy Clin. Immunol. 72(5):443–447.CrossRefGoogle Scholar
  206. Spengler, J.D., D.W. Dockery, W.A. Turner, J.M. Wolfson, and B.G. Ferris, Jr. 1981. Long-term measurements of respirable sulfates and particles inside and outside homes. Atmos. Environ. 15:23–30.CrossRefGoogle Scholar
  207. Spengler, J.D., C.P. Duffy, R. Letz, T.W. Tibbits, and B.G. Ferris, Jr. 1983. Nitrogen dioxide concentrations inside and outside 137 homes and implications for ambient air quality standards and health effects research. Environ. Sci. Techol. 17:164–168.CrossRefGoogle Scholar
  208. Spengler, J.D., R.D. Treitman, T.D. Tosteson, D.T. Mage, and M.L. Soczek. 1985. Personal exposures to respirable particulates and implications for air pollution epidemiology. Environ. Sci. Technol. 19:700–707.CrossRefGoogle Scholar
  209. Spengler, J.D., J. Ware, F. Speizer, B. Ferris, D. Dockery, E. Lebret, and B. Brunnekreef. 1987. Harvard’s indoor air quality respiratory health study. Pages 742–746 in: Seifert, B., H. Esdorn, M. Fischer, H. Rüden, and J. Wegner (eds.). Indoor Air ’87. Proceedings of the 4th International Conference on Indoor Air Quality and Climate. August 17–21. Volume 2. Institute for Water, Soil, and Air Hygiene. Berlin (West).Google Scholar
  210. Spengler, ID., P.B. Ryan, and M. Schwab. 1992. Nitrogen dioxide exposure studies-Volume 4. Personal exposure to nitrogen dioxide in the Los Angeles basin. Gas Research Institute. Chicago, Illinois. 200 pages.Google Scholar
  211. Spicer, C.W., M.W. Holdren, L.E. Slivon, R.W. Contant, M.E. Graves, D.S. Shadwick, W.A. McClenny, J.D. Mulik, and T.R. Fitz-Simmons. 1986. Intercomparison of sampling techniques for toxic organic compounds in indoor air. Pages 45–60 in: Hochheiser, S. and R.K.M. Jayanti (eds.). Proceedings of the 1986 EPA/APCA Symposium on the Measurement of Toxic Air Pollutants. Air Pollution Control Association. Pittsburgh, Pennsylvania.Google Scholar
  212. Spitz, H. and M.E. Wrenn. 1977. Design and application of a continuous, digital-output, environmental radon measuring instrument. Pages 48–64 in: Breslin, A.J. (ed.). Radon workshop. February. HASL-325. Health and Safety Laboratory. U.S. Department of Energy. New York, New York.Google Scholar
  213. Stark, PC., L.M. Ryan, J. MacDonald, and H.B. Burge. 1997. Using meteorologic data to model and predict ragweed pollen levels. Aerobiologia 13:177–184.CrossRefGoogle Scholar
  214. Stephen, E., A.E. Raftery, and P. Dowding. 1990. Forecasting spore concentrations: A time series approach. Internat. J. Biometeorol. 34(2):87–89.CrossRefGoogle Scholar
  215. Strong, J.C. 1988. The size of attached and unattached radon daughters in room air. J. Aerosol Sci. 19:1327–1330.CrossRefGoogle Scholar
  216. Strong, J.C. 1989. Design of the NRPB activity size measurement system and results. Presented at the Workshop on “Unattached” Fraction Measurements. April. University of Illinois. Urbana, Illinois. 32 pages.Google Scholar
  217. Su, H.J., A. Rotnitzky, H.A. Burge, and J.D. Spengler. 1992. Examination of fungi in domestic interiors by using factor analysis. Correlations and associations with home factors. Appl. Environ. Microbiol. 58:181–186.Google Scholar
  218. Su, H.J., J.D. Spengler, and H.A. Burge. 1998. Influence of residential airborne fungal concentrations on childhood respiratory symptoms. Appl. Environ. Microbiol. Submitted for publication.Google Scholar
  219. Swanson, M.C., M.K. Agarwal, and C.E. Reed. 1985. An immunochemical approach to indoor aeroallergen quantitation with a new volumetric air sampler: studies with mite, roach cat, mouse, and guinea pig antigens. J. Allergy Clin. Immunol. 76:721.CrossRefGoogle Scholar
  220. Swanson, M.C., A.R. Campbell, M.J. Klauck, and C.E. Reed. 1989. Correlations between levels of mite and cat allergens in settled and airborne dust. J. Allergy Clin. Immunol. 83:776.CrossRefGoogle Scholar
  221. Thatcher, T.L. and D.W. Layton. 1995. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 29:1487–1497.CrossRefGoogle Scholar
  222. Thomas, J.W. 1970. Modification of the Tsivoglou method for radon daughters in air. Health Phys. 19:691–693.CrossRefGoogle Scholar
  223. Thomas, J.W. 1972. Measurement of radon daughters in air. Health Phys. 23:783–789.CrossRefGoogle Scholar
  224. Thomas, K.W., E.D. Pellizzari, R.L. Perritt, and W.C. Nelson. 1991. Effect of dry-cleaned clothes on tetra-chloroethylene levels in indoor air, personal air, and breath for residents of several New Jersey homes. J. Exposure Anal. Environ. Epidemiol. 1:475–490.Google Scholar
  225. Thomas, K.W., E.D. Pellizzari, C.A. Clayton, R.L. Perritt, R.N. Dietz, R.W. Goodrich, W.C. Nelson, PR. and L.A. Wallace. 1993. Temporal variability of benzene exposure for residents in several New Jersey homes with attached garages or tobacco smoke. J. Exposure Anal. Environ. Epidemiol. 3:49–73.Google Scholar
  226. Thomas, K.W., E.D. Pellizzari, C.A. Clayton, D.A. Whitaker, R.C. Shores, J.D. Spengler, H. Özkaynak, and L.A. Wallace. 1993. Particle total exposure assessment methodology (PTEAM) study: Method performance and data quality for personal, indoor, and outdoor aerosol monitoring at 178 homes in southern California. J. Exposure Anal. Environ. Epidemiol 3:203–226.Google Scholar
  227. Tichenor, B.A. and M.A. Mason. 1987. Organic emissions from consumer products and building materials to the indoor environment. JAPCA 38:264–268.CrossRefGoogle Scholar
  228. Tichenor, B.A., L.E. Sparks, J.B. White, and M.D. Jackson. 1990. Evaluating sources of indoor air pollution. JAWMA 41:487–492.Google Scholar
  229. Traynor, G.W, J.C. Aceti, M.G. Apte, B.V. Smith, L.L. Green, A. Smith Reisner, K.M. Novak, and D.O. Moses. 1989. Macromodel for assessing residential concentrations of combustion-generated pollutants: model development and preliminary predictions for CO, N02, and rerspirable suspended particulates. LBL-25211. Lawrence Berkeley Laboratory. Berkeley, California. 200 pages.Google Scholar
  230. Traynor, G.W., B.V. Apte, H.A. Sokol, J.C. Chuang, W.G. Tucker, and J.L. Mumford. 1990. Selected organic pollutant emissions from unvented kerosene space heaters. Environ. Sci. Technol. 24:1265–1270.CrossRefGoogle Scholar
  231. Tsivoglou, E.C., H.E. Ayers, and D.A. Holiday. 1953. Occurrence of non-equilibrium atmospheric mixtures of radon and its daughters. Nucleonics 11(9):40.Google Scholar
  232. Tu, K.W, and E.O. Knutson. 1988a. Indoor radon progeny particle size distribution measurements made with two different methods. Radiat. Protect. Dosim. 24:251–255.Google Scholar
  233. Tu, K.W, and E.O. Knutson. 1988b. Indoor outdoor aerosol measurements for two residential buildings in New Jersey. Aerosol Sci. Technol. 9:71–82.CrossRefGoogle Scholar
  234. Turk, A. 1963. Measurement of odorous vapors in test chambers: Theoretical. ASHRE Journal. 5(10):55–58.Google Scholar
  235. USEPA (U.S. Environmental Protection Agency). 1986. Broad Scan Analysis of the FY82 National Human Adipose Tissue Survey Specimens. Volumes I-V. Office of Research and Development. Washington, D.C. 1200 pages.Google Scholar
  236. USEPA (U.S. Environmental Protection Agency). 1989. Indoor air quality and work environment survey: EPA headquarters’ buildings. Volume I: Employee surveys. Final Report. Office of Research and Development. EPA Contract Number 68-01-7359. Washington, D.C. 250 pages.Google Scholar
  237. USEPA (U.S. Environmental Protection Agency). 1990a. Indoor air quality and work environment survey: EPA headquarters’ building. Volume II: Results of indoor air environmental monitoring study. Office of Research and Development. Washington, D.C. 200 pages.Google Scholar
  238. USEPA (U.S. Environmental Protection Agency). 1990b. Indoor air quality and work environment survey: EPA headquarters’ buildings. Volume III: Relating employee responses to the follow-up questionnaire with environmental measurements of indoor air quality. Office of Research and Development. May 1990. Washington, D.C. 150 pages.Google Scholar
  239. USEPA (U.S. Environmental Protection Agency). 1991. Indoor air quality and work environment survey: EPA headquarters’ buildings. Volume IV: Multivariate statistical analysis of health comfort and odor perception as related to personal and workspace characteristics. Office of Research and Development. Washington, D.C. 250 pages.Google Scholar
  240. USEPA (US. Environmental Protection Agency). 1992. A citizen’s guide to radon (2nd edition). ANR-464. Office of Air and Radiation. Washington, D.C.Google Scholar
  241. USEPA (U.S. Environmental Protection Agency). 1996. Exposure factors handbook. Volume III: Activity factors. EPA/600/P-95/002Bc. Office of Research and Development. Washington, D.C. 400 pages.Google Scholar
  242. Verhoeff, A. and H.A. Burge. 1997. Health risk assessment of fungi in home environments. Ann. Allergy 78(6):544–559.CrossRefGoogle Scholar
  243. Verhoeff, A.P., J.H. Van Wijnen, E.S. Van Reenen-Hoekstra, R.A. Samson, R.T. Van Storen, and B. Brunekreef. 1994. Fungal propagules in house dust. II. Relation with residential characteristics and respiratory symptoms. Allergy 79:540–547.CrossRefGoogle Scholar
  244. Wallace, L.A. 1987. The TEAM study: summary and analysis. Volume I. U.S. Environmental Protection Agency. Office of Research and Development. EPA 600/6-87/002a. National Technical Information Service. PB 88-100060. Springfield, Virginia.Google Scholar
  245. Wallace, L.A. and Clayton, C. A. 1987. Volatile Organic Compounds in 600 U.S. Homes: Major Sources of Personal Exposure. Pages 183–187 in: B. Seifert, H., Esdorn, M., Fischer, H., Rüden, and J. Wegner (eds.). Indoor Air ’87: Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin, 17–21 August 1987: Vol. 1. Institute for Water, Soil, and Air Hygiene. Berlin.Google Scholar
  246. Wallace, L.A. 1989. The exposure of the general population to benzene. Cell Biol. Toxicity 5:297–314.CrossRefGoogle Scholar
  247. Wallace, L.A. 1990. Major sources of exposure to benzene and other volatile organic compounds. Risk Anal. 10:59–64.CrossRefGoogle Scholar
  248. Wallace, L.A. 1991. Comparison of risks from outdoor and indoor exposure to toxic chemicals. Environ. Health Perspect. 95:7–13.CrossRefGoogle Scholar
  249. Wallace, L.A. 1997. Unpublished data. U.S. Environmental Protection Agency. 12201 Sunrise Valley Drive, 555 National Center, Reston, Virginia 20192.Google Scholar
  250. Wallace, L.A., R. Zweidinger, M. Erickson, S. Cooper, D. Whitaker, and E. Pellizzari. 1982. Monitoring individual exposure: Measurement of volatile organic compounds in breathing-zone air, drinking water, and exhaled breath. Environ Internat. 8:269–282.CrossRefGoogle Scholar
  251. Wallace, L.A., E. Pellizzari, T. Hartwell, R. Rosenzweig, M. Erickson, C. Sparacino, and H. Zelon. 1984. Personal exposure to volatile organic compounds: I. Direct measurement in breathing-zone air, drinking water, food, and exhaled breath. Environ. Res. 35:293–319.CrossRefGoogle Scholar
  252. Wallace, L.A., E. Pellizzari, T. Hartwell, C. Sparacino, L. Sheldon, and H. Zelon. 1985. Personal exposures, indoor-outdoor relationships and breath levels of toxic air agents measured for 355 persons in New Jersey. Atmos. Environ. 19:1651–1661.CrossRefGoogle Scholar
  253. Wallace, L.A., E. Pellizzari, T. Hartwell, R. Whitmore, C. Sparacino, and H. Zelon. 1986. Total Exposure Assessment Methodology (TEAM) study: Personal exposures, indoor-outdoor relationships, and breath levels of volatile organic compounds in New Jersey. Environ. Internat. 12:369–387.CrossRefGoogle Scholar
  254. Wallace, L.A., E.D. Pellizari, T.D. Hartwell, C. Sparacino, R. Whitmore, L. Sheldon, H. Zelon, and R. Perrit. 1987a. The TEAM study: Personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota. Environ. Res. 43:290–307.CrossRefGoogle Scholar
  255. Wallace, L.A., E. Pellizari, T. Hartwell, K. Perritt, and R. Ziegenfus. 1987b. Exposures to benzene and other volatile organic compounds from active and passive smoking. Arch. Environ. Health. 42:272–279.CrossRefGoogle Scholar
  256. Wallace, L.A., E. Pellizari, B. Leaderer, T. Hartwell, R. Perritt, H. Zelon, and L. Sheldon. 1987c. Emissions of volatile organic compounds from building materials and consumer products. Atmos. Environ. 21:385–393.CrossRefGoogle Scholar
  257. Wallace, L.A., E.D. Pellizzari, T.D. Hartwell, R. Whitmore, R. Perritt, and L. Sheldon. 1988. The California TEAM study: Breath concentrations and personal exposures to 26 volatile compounds in air and drinking water of 188 residents of Los Angeles, Antioch, and Pittsburgh, CA. Atmos. Environ. 22:2141–2163.CrossRefGoogle Scholar
  258. Wallace, L.A., E.D. Pellizzari, T.D. Hartwell, V. Davis, L.C. Michael, and R.W. Whitmore. 1989. The influence of personal activities on exposure to volatile organic compounds. Environ. Res. 50:37–55.CrossRefGoogle Scholar
  259. Wallace, L.A., W.C. Nelson, R. Ziegenfus, and E. Pellizzari. 1991a. The Los Angeles TEAM study: Personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds. J. Exposure Anal. Environ. Epidemiol. l(2):37–72.Google Scholar
  260. Wallace, L.A., E. Pellizzari, and C. Wendel. 1991b. Total volatile organic concentrations in 2700 personal, indoor, and outdoor air samples collected in the USEPA TEAM studies. Indoor Air. 4:465–477.CrossRefGoogle Scholar
  261. Wellish, E.M. 1913. The distribution of the active deposit of radium in an electric field. Phil. Mag. 6(xxvi):623–635.Google Scholar
  262. Weschler, C.J., H.C. Shields, S.P. Kelty, L.A. Psota-Kelty, and J.D. Sinclair. 1989. Comparison of effects of ventilation, filtration and outdoor air at telephone office buildings. Pages 9–34 in: Nagda, N.L. and J.P Harper (eds.). Design and protocol for monitoring indoor air quality. ASTM STP 1002. American Society for Testing and Materials. Philadelphia, Pennsylvania.CrossRefGoogle Scholar
  263. Wilson, A.L., S.D. Colome, P.E. Baker, and E.W. Becker. 1986. Residential indoor air quality characterization study of nitrogen dioxide. Phase I Final Report. October. Southern California Gas Company. Los Angeles, California.Google Scholar
  264. Wilson A.L., S.D. Colome, and Y. Tian. 1993a. California residential indoor air quality study. Volume I: Methodology and descriptive statistics. Integrated Environmental Services. Irvine, California.Google Scholar
  265. Wilson A.L., S.D. Colome, and Y. Tian. 1993b. California residential indoor air quality study. Volume I: Appendix. Integrated Environmental Services. Irvine, California.Google Scholar
  266. Wilson, N.K., R.K. Barbour, J.C. Chuang, and R. Mukund. 1994. Evaluation of a real-time monitor for fine particle-bound PAH in air. Pages 167–174 in: Polycyclic aromatic compounds. Volume 5. Gordon and Breach Science Publishers. New York, New York.Google Scholar
  267. Wilson A.L., S.D. Colome, and Y. Tian. 1995. California residential indoor air quality study. Volume 3: Ancillary and exploratory analyses. Integrated Environmental Services. Irvine, California.Google Scholar
  268. Wrenn, M.E., H. Spitz, and N. Cohen. 1975. Design of a continuous digital output environmental radon monitor. Institute of Electrical and Electronics Engineers. Trans. Nuclear Sci. NS-22:645–648.CrossRefGoogle Scholar
  269. Yanagisawa, Y. and H. Nishimura. 1982. A badge-type personal sampler for measurement of personal exposure to N02 and NO in ambient air. Environ. Internat. 8:235–239.CrossRefGoogle Scholar
  270. Yeh, H.C., YS. Cheng, and M.M. Orman. 1982. Evaluation of various types of wire screens as diffusion battery cells. J. Colloid Interface Sci. 86:12–16.CrossRefGoogle Scholar
  271. Zweidinger, R.B., J.E. Sigsby, S.B. Tejada, F.D. Stump, D.L. Dropkins, and WD. Ray. 1988. Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies. Environ. Sci. Technol. 22:956–962.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Scott Baker
    • 1
  • Jeffrey Driver
    • 2
  • David McCallum
    • 3
  1. 1.International Copper AssociationNew YorkUSA
  2. 2.infoscientific.com, Inc. and risksciences.netManassasUSA
  3. 3.FOCUS GROUPTilghman IslandUSA

Personalised recommendations