Animal Lectins: from Initial Description to Elaborated Structural and Functional Classification

  • Herbert Kaltner
  • Hans-J. Gabius
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)

Abstract

The genetic code connects the two biochemical dimensions of nucleic acids and proteins. Theoretical calculations on coding capacity reveal that oligo saccharides as hardware surpass peptides by more than seven orders of magnitude based on hexamer synthesis. Thus, the sugar code establishes the third dimension of biological information transfer. Using carbohy-drate-binding proteins (lectins, enzymes and antibodies) the information content of such epi-topes is decoded. Currently, five families of animallectins are defined in structural terms, i.e. the C-type, I-type and P-type groups, the galectins and the pentraxins. They are involved in intra-and intercellular glycan routing using oligo saccharides as postal-code equivalents and acting as defense molecules homing in on foreign or aberrant glycosignatures, as crosslinking agent in biosignaling and as coordinator of transient or firm cell-ceIVcell-matrix contacts. By delineating the driving forces toward complex formation, knowledge about the causes for specificity can be turned into design of custom-made high-affinity ligands for clinical applica-tion, e.g. in anti-adhesion therapy, drug targeting or diagnostic histopathology.

Keywords

Oligosaccharide Galactose Laminin Mannose Hydrolase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Laine, The information-storing potential of the sugar code, in: Glycosciences: Status and Perspectives, H.-J. Gabius, S. Gabius, eds., pp. 1–14, Chapman & Hall, London-Weinheim (1997).Google Scholar
  2. 2.
    E. F. Hounsell, Methods of glycoconjugate analysis, in: Glycosciences: Status and Perspectives, H.-J. Gabius, S. Gabius, eds., pp. 15–30, Chapman & Hall, London-Weinheim (1997).Google Scholar
  3. 3.
    H. Geyer and R. Geyer, Strategies for glycoconjugate analysis, Acta Anat. 161: 18–35 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Varki, “Unusual” modifications and variations of vertebrate oligosaccharides: are we missing the flowers for the trees ? Glycobiology 6: 707–710 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    L.V. Hooper,S.M. Manzella, and J. U. Baenziger, The biology of sulfated oligosaccharides, in: Glycosciences: Status and Perspectives, H.-J. Gabius, S. Gabius, eds., pp. 261–276, Chapman & Hall, London-Weinheim (1997).Google Scholar
  6. 6.
    G. Reuter and H.-J. Gabius, Eukaryotic glycosylation: whim of nature or multipurpose tool ? Cell. Mol. Life Sci. 55: 368–422 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    I. Brockhausen, J. Schutzbach, and W. Kuhns, Glycoproteins and their relationship to human disease, Acta Anat. 161: 36–78 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    P. J. Winterburn and C.F. Phelps, The significance of glycosylated proteins, Nature 236: 145–151 (1972).CrossRefGoogle Scholar
  9. 9.
    A. Villalobo and H.-J. Gabius, Signaling pathways for transduction of the initial message of the glycocode into cellular responses, Acta Anat. 161:110–129 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    I. Kocourek, Historical background. In: The Lectins. Properties,Functions, and Applications in Biology and Medicine, I. E. Liener, N. Sharon, and I. J. Goldstein, eds., pp. 1–32, Academic Press, Orlando (1986).CrossRefGoogle Scholar
  11. 11.
    H.-J. Gabius, Non-carbohydrate binding partners/domains of animal lectins, Int. J. Biochem. 26: 469–477 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    H.-J. Bordet and F. P. Gay, Sur les relations des sensibilisatrices avec l’alexine, Ann. Inst. Pasteur 20: 467–498 (1906).Google Scholar
  13. 13.
    H.-J. Gabius, R. Engelhardt, S. Rehm, and F. Cramer, Biochemical characterization of endogenous carbohydrate-binding proteins from spontaneous murine rhabdomyosarcoma, mammary adenocarcinoma, and ovarian teratoma, J. Natl. Cancer Inst. 73: 1349–1357 (1984).PubMedGoogle Scholar
  14. 14.
    H.-J. Gabius, Endogenous lectins in tumors and the immune system, Cancer Investig. 5: 39–46 (1987).CrossRefGoogle Scholar
  15. 15.
    K. Drickamer, Two distinct classes of carbohydrate-recognition domains in animal lectins, J. Biol. Chem. 263: 9557–9560 (1988).PubMedGoogle Scholar
  16. 16.
    K. Drickamer, Evolution of Ca2+-dependent animal lectins, Progr. Nucleic Acid Res. Mol. Biol. 45: 207–233 (1993).CrossRefGoogle Scholar
  17. 17.
    W. L. Weis and K. Drickamer, Structural basis of lectin-carbohydrate interaction, Annu. Rev. Biochem. 65: 441–473 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    H.-J. Gabius, Animal lectins, Eur. J. Biochem. 243: 543–576 (1997).Google Scholar
  19. 19.
    D. Solís, A. Romero, H. Kaltner, H.-J. Gabius, and T. Diaz-Mauriflo, Different architecture of the combining site of the two chicken galectins revealed by chemical mapping studies with synthetic ligand derivatives, J. Biol. Chem. 271: 12744–12748 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    K.S. Lips, H. Kaltner, G. Reuter, B. Stierstorfer, F. Sinowatz, and H.-J. Gabius, Correspondence of gradual developmental increases of expression of galectin-reactive glycoconjugates with alterations of the total contents of the two differentially regulated galectins in chicken intestine and liver as indications for overlapping functions, Histol. Histopathol. 14: 743–760 (1999).PubMedGoogle Scholar
  21. 21.
    E.C. Beyer and S.H. Barondes, Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues, J. Cell Biol. 92: 23–27 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Sakakura, J. Hirabayashi, Y. Oda, Y. Okyama, and K. Kasai, Structure of chicken 16 kDa β-galactoside-binding lectin, J. Biol. Chem. 265: 21573–21579 (1990).PubMedGoogle Scholar
  23. 23.
    J. Lu, and Y. Le, Ficolins and the fibrinogen-like domain, Immunobiology 199: 190–199 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Chen, A. F. Rowley, R.P. Newton, and N.A. Ratcliffe, Identification, purification and properties of a β-1,3-g1ucan-specific lectin from the serum of the cockroach, Blaberus discoidalis, which is implicated in immune defence reactions. Comp. Biochem. Physiol. B 122: 309–319 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    H.-J. Gabius, Detection and functions of mammalian lectins - with emphasis on membrane lectins, Biochim. Biophys. Acta 1071: 1–18 (1991).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Kaltner and B. Stierstorfer, Animal lectins as cell adhesion molecules, Acta Anat. 161: 162–179 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Rüdiger, Structure and function of plant lectins, in: Glycosciences: Status and Perspectives, H.-J. Gabius, S. Gabius, eds., pp. 415–438, Chapman & Hall, London-Weinheim (1997).Google Scholar
  28. 28.
    H.-J. Gabius and S. Gabius, Chemical and biochemical strategies for the preparation of glycohistochemical tools and their application in lectinology, Adv. Lectin Res. 5: 123–157 (1992).Google Scholar
  29. 29.
    Y.C. Lee and R.T. Lee, eds., Neoglycoconjugates: Preparation and Applications, Academic Press, San Diego (1994).Google Scholar
  30. 30.
    N.V. Bovin and H.-J. Gabius, Polymer-immobilized carbohydrate ligands: versatile chemical tools for biochemistry and medical sciences, Chem. Soc. Rev. 24: 413–421 (1995).CrossRefGoogle Scholar
  31. 31.
    S. Gabius, K. Kayser, N.V. Bovin, N. Yamazaki, S. Kojima, H. Kaltner, and H.-J. Gabius, Endogenous lectins and neoglycoconjugates: a sweet approach to tumor diagnosis and targeted drug delivery, Eur. J. Pharm. Biopharm. 42:250–261 (1996).Google Scholar
  32. 32.
    H.-J. Gabius, The how and why of protein-carbohydrate interaction: a primer to the theoretical concept and a guide to application in drug design, Pharm. Res. 15:23–30 (1998).PubMedCrossRefGoogle Scholar
  33. 33.
    E.J. Toone, Structure and energetics of protein-carbohydrate complexes, Curr. Opin. Struct. Biol. 4:719–728 (1994).CrossRefGoogle Scholar
  34. 34.
    H.-C. Siebert, M. Gilleron, H. Kaltner, C.-W. von der Lieth, T. Kozár, N.V. Bovin, E. Y. Korchagina, J.F.G. Vliegenthart, and H.-J. Gabius, NMR-based, molecular dynamics-and random walk molecular mechanics-supported study of conformational aspects of a carbohydrate ligand (Galβ 1–2Galβ 1-R) for an animal galectin in the free and in the bound state, Biochem. Biophys. Res. Commun. 219: 205–212 (1996).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Poppe, G.S. Brown, J.S. Philo, P.V. Nikrad, and B.H. Shah, Conformation of sLex tetrasaccharide, free in solution and bound to E-, P-, and L-selectin, J. Am. Chem. Soc. 119:1727–1736 (1997).CrossRefGoogle Scholar
  36. 36.
    C.-W. von der Lieth, H.-C. Siebert, T. Kozár, M. Burchert, M. Frank, M. Gilleron, H. Kaltner, G. Kayser, E. Tajkhorshid, N.V. Bovin, J.F.G. Vliegenthart, and H.-J. Gabius, Lectin ligands: new insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins, Acta Anat. 161:91–109 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Harris, G.R. Kiddie, R.A. Field, M.J. Milton, B. Ernst, J.L. Magnani, and S.W. Homans, Stableisotope-assisted NMR studies on 13C-enriched sialyl Lewisx in solution and bound to E-selectin, J. Am. Chem. Soc. 121:2546–2551 (1999).CrossRefGoogle Scholar
  38. 38.
    H.-J. Gabius, Tumor lectinology: at the intersection of carbohydrate chemistry, biochemistry, cell biology and oncology, Angew. Chem. Int. Ed. 27:1267–1276 (1988).Google Scholar
  39. 39.
    H.-J. Gabius and S. Gabius (eds.), Lectins and Glycobiology, Springer Verlag, Heidelberg-New York (1993).CrossRefGoogle Scholar
  40. 40.
    H.-J. Gabius and S. Gabius (eds.), Glycosciences: Status and Perspectives, Chapman & Hall, London-Weinheim (1997).Google Scholar
  41. 41.
    H.-J. Gabius and F. Sinowatz (eds.), Special issue on glycosciences, Acta Anat. 161: 1–276 (1998).Google Scholar
  42. 42.
    H.-J. Gabius, Endogene Lektine in Tumoren und ihre mögliche Bedeutung fir Diagnose und Therapie von Krebserkrankungen, Onkologie 12: 175–181 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    H.-J. Gabius, Concepts of tumor lectinology, Cancer Investig. 15: 454–464 (1997).CrossRefGoogle Scholar
  44. 44.
    H.-J. Gabius, R. Engelhardt, F. Cramer, Endogenous tumor lectins: a new class of tumor markers and targets for therapy? Med. Hypothesis 18: 47–50 (1985).CrossRefGoogle Scholar
  45. 45.
    S. Gabius, V. Schiumacher, H. Franz, S.S. Joshi, and H.-J. Gabius, Analysis of cell-surface sugar receptor expression by neoglycoenzyme binding and adhesion to plastic-immobilized neoglycoproteins for related weakly and strongly metastatic cell lines of murine tumor model systems, Int. J. Cancer 46: 500–507 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Raz and R. Lotan Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis, Cancer Metastasis Rev. 6: 433–452 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Irimura, Y. Matsushita, R.C. Sutton, D. Carralero, D.W. Ohannesian, K.R. Cleary, D.M. Ota, G.L. Nicolson, and R. Lotan, Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stages, Cancer Res. 51: 387–393 (1991).PubMedGoogle Scholar
  48. 48.
    R. Lotan, P.M. Belloni, R.J. Tressler, D. Lotan, X.C. Xu, and D.K. Meijer (1994) Expression of galectins on microvessel endothelial cells and their involvement in tumor cell adhesion, Glycoconjugate J 11: 462–468.CrossRefGoogle Scholar
  49. 49.
    D. W. Ohannesian and R. Lotan, Galectins in tumor cells; in: Glycosciences: Status and Perspectives, H.-J. Gabius, S. Gabius, eds., pp. 459–469, Chapman & Hall, London-Weinheim (1997).Google Scholar
  50. 50.
    M. Fukuda, Lysosomal membrane glycoproteins: structure, biosynthesis, and intracellular trafficking, J. Biol. Chem. 266: 21327–21330 (1991).PubMedGoogle Scholar
  51. 51.
    D. W. Ohannesian, D. Lotan, P. Thomas, J.M. Jessup, M. Fukuda, H.-J. Gabius, and R. Lotan, Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells, Cancer Res. 55: 2191–2199 (1995).PubMedGoogle Scholar
  52. 52.
    H. Inohara and A. Raz, Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion, Cancer Res. 55: 3267–3271 (1995).PubMedGoogle Scholar
  53. 53.
    R.S. Bresalier, J.C. Byrd, L. Wang, and A. Raz, Colon cancer mucin: a new ligand for the β-galactosidebinding protein galectin-3, Cancer Res. 56: 4354–4357 (1996).PubMedGoogle Scholar
  54. 54.
    S. André, S. Kojima, N. Yamazaki, C. Fink, H. Kaltner, K. Kayser, and H.-J. Gabius, Galectins-1 and —3 and their ligands in tumor biology. Non-uniform properties in cell surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/ without metastatic propensity, J. Cancer Res. Clin. Onco1.125: 461–474 (1999).CrossRefGoogle Scholar
  55. 55.
    S. Bharadwaj, H. Kaltner, E.Y. Korchagina, N.V. Bovin, H.-J. Gabius, and A. Surolia, Microcalorimetric indications for ligand binding as a function of the protein for galactoside-specific plant and avian lectins, Biochim. Biophys. Acta 1472: 191–196 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Herbert Kaltner
    • 1
  • Hans-J. Gabius
    • 1
  1. 1.Institute of Physiological ChemistryFaculty of Veterinary Medicine, Ludwig-Maximilians- UniversityMünchenGermany

Personalised recommendations