Molecular Mimicry of Host Structures by Lipooligosaccharides of Neisseria Meningitidis: Characterization of Sialylated and Nonsialylated Lacto-N-Neotetraose (Galß1-4GlcNAcß1-3Galβ1-4Glc) Structures in Lipooligosaccharides Using Monoclonal Antibodies and Specific Lectins

  • Chao-Ming Tsai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)


Neisseria meningitidis lipooligosaccharides (LOSs) are classified into 12 immunotypes. Most LOSs are heterogeneous in having a few components by SDS-PAGE analysis that differ antigenic ally and chemically. We have utilized a monoclonal antibody that recognizes lacto-N-neotetraose (LNnT) and the lectin, Maackia amurensis leukoagglutinin (MAL), which is specific for NeuNAcα2-3GalβI-4GlcNAc trisacchride sequence to characterize the 12 N. meningitidis LOSs. Using the combination of ELISA, SDS-PAGE, Western blotting, and other chemical analyses, we have shown that the LNnT (Galβ1–4GlcNAcβ1–3Galβl–4Glc) sequence was present in the 4.0-kDa LOS components of seven immunotype LOSs seen on SDS-P AGE. Six of the seven LNnT -containing LOSs also bound the MAL lectin indicating that N-acetylneuraminic acid (NeuNAc) was α2,3-linked to the LNnT sequence in the LOSs. Sialylation of the terminal Gal of LNnT-containing 4.0-kDa component caused only a slight increase in its apparent MW to 4100 on SDS-P AGE. The one LOS with the LNnT-containing component, but not MAL-binding, was from a Group AN. meningitidis, which does not synthesize CMP-NeuNAc, the substrate needed for LOS sialylation. Thus, it is concluded (1) a common LNnT sequence is present in seven immunotype LOSs in addition to their immunotype epitopes, and (2) NeuNAc is α2->3 linked to the terminal Gal of LNnT if a organism synthesizes CMP-NeuNAc such as Groups Band C organisms. The above conclusions are consistent with the published structures of N. meningitidis LOSs. The results also demonstrate that specific carbohydrate-binding lectins and monoclonal antibodies can be used as simple yet effective tools to characterize specific carbohydrate sequences in a bacterial LOS or LPS such as N. meningitidis LOS.

It is intriguing that N. meningitidis LOSs mimiC certain glycosphingolipids, such as paragloboside (LNnT -cerami de) and sialylparagloboside, and some glycoproteins of the host in having LNnT and N-acetyllactosamine sequences respectively with or without α2->3 linked NeuNAc. Epidemiological studies of N. meningitidis suggest that the molecular mimicry of host structures by its LOS plays a role in the pathogenesis of N. meningitidis by helping the organism to evade host immune defenses in man. The molecular mimicry of host structures by LOS or LPS is also found in other human pathogens such as N. gonorrhoeae, Haemophilus ducreyi, H. injluenaze, Moraxella catarrhalis, Campylobacter jejuni, and Helicobacter pylori.


Sialic Acid Neisseria Gonorrhoeae Capsular Polysaccharide Molecular Mimicry Meningococcal Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apicella, M.A. and Mandrell, R.E. (1989) Molecular mimicry as a factor in the pathogenesis of human neisserial infection:in vitroandin vivomodification of the lipooligosaccharideNeisseria gonorrhoeaeby N-acetylneuraminic acid.Pediatr. Infect. Dis. J.,8,901–902.PubMedGoogle Scholar
  2. Ashton, F.E., Ryan, A., Diena, B., and Jennings, H.J. (1983) A new serogroup (L) ofNeisseria meningitidis. J. Clin. Microbiol.17, 722–727.Google Scholar
  3. Chen, W.H., Balakonis, P., and Tsai, C-M. (1995) Detection of lipopolysaccharides blotted on nylon membranes.J. Endotoxin Res. 2, 405–410.Google Scholar
  4. Crocker, P.R., Kelm, S., Dubois, C., Martin, B., McWilliam, A.S., Shotton, D.M., Paulson, J.C., and Gordon, S. (1991) Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages.EMBO J. 10,1661–11669.PubMedGoogle Scholar
  5. Dell, A., Azadi, P., Tiller, P., Thomas-Oates, J., Jennings, H.J., Beurret, M., and Michon, F. (1990) Analysis of oligosaccharide epitopes of meningococcal lipopolysaccharide by fast-atom-bombardment mass spectrometry.Carbohydr. Res. 200, 59–76.PubMedCrossRefGoogle Scholar
  6. Di Fabio, J.L., Michon, F., Brisson, J-R., and Jennings, H.J. (1990) Structure of the L1 and L6 core oligosaccharide epitopes ofNeisseria meningitidis. Can. J. Chem. 68, 1029–1034.CrossRefGoogle Scholar
  7. Estabrook, M.M., Christopher, N.C., Griffiss, J.M., Baker, C.J. and Mandrell, R.E. (1992) Sialylation and human neutrophil killing of group CNeisseria meningitidis. J. Infect. Dis. 166, 1079–1088.CrossRefGoogle Scholar
  8. Frasch, C.E., Zollinger, W.D., and Poolman, J.T. (1985) A proposed nomenclature for designation of serotypes withinNeisseria meningitidis. Rev. Infect. Dis.7, 504–510. Frasch,C.E., (1995) Meningococcal vaccines: past, present and future, In: Cartwright, K., ed. Meningococcal disease, John Wiley & Sons, New York, pp. 245–284.Google Scholar
  9. Fukuda, M., Dell, A. and Fukuda, M.N. (1984) Structure of fetal lactosaminoglycan.J. Biol. Chem. 259, 4782–4791.PubMedGoogle Scholar
  10. Gamian, A., Beurret, M., Michon, F., Brisson, J-R. and Jennings, H.J. (1992) Structure of the L2 lipopolysaccharide core oligosaccharide ofNeisseria meningitidis. J. Biol.Chem. 267, 922–925.Google Scholar
  11. Gilbert, M., Watson, D.C., Cunningham, A-M., Jennings, M.P., Young, N.M., and Wakarchuk, W.W. (1996) Cloning of the lipooligosaccharide a-2,3-sialyltransferase from the bacterial pathogensNeisseria meningitidisandNeisseria gonorrhoeae. J. Biol. Chem.,271,28271–28276.Google Scholar
  12. Gill, M.J., McQuillen, D.P., Van Putten, J.P.M., Wetzler, L.M., Bramley, J., Crooke, H., Parsons, N.J., Cole, J.A. and Smith, H. (1996) Functional characterization of sialyltransferase-Deficient mutant ofNeisseria gonorrhoeae. Infect. and Immun. 64, 3374–3378.Google Scholar
  13. Gotschlich, E.C. (1990)Neisseriag.In Microbiology (Eds Davis,B.D., Dulbecco,R., Eisen,H.N., and Ginsberg,H.S.) 4th edn. J.B. Lippincott, Philadelphia, PA, pp. 551–560.Google Scholar
  14. Gu, X.X., and Tsai, C.M. (1991) Purification of rough-type lipopolysaccharides ofNeisseria meningitidisfrom cells and outer membrane vesicles in spent media.Anal. Biochem.,196,311–318.PubMedCrossRefGoogle Scholar
  15. Hakomori, S. (1981) Blood groups ABH and Ii antigens of human erythrocytes. Chemistry, polymorphism, and their development change.Semin. Hematol. 18, 39–52.PubMedGoogle Scholar
  16. Hammerschmidt, S., Birkholz, C., Zahringer, U., et al., (1994) Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance inNeisseria meningitidis. Mol. Microbiol. 11, 885–896.CrossRefGoogle Scholar
  17. Jennings, H.J. (1983) Capsular polysaccharides as human vaccines.Adv Carbohydr Chem Biocem 41, 155–208.CrossRefGoogle Scholar
  18. Jennings, H.J., Beurret, M., Gamian, A. and Michon, F. (1987) Structure and immunochemistry of meningococcal lipopolysaccharides.Antonie van Leeuwenhoek 53, 519–522.PubMedCrossRefGoogle Scholar
  19. Jennings, H.J., Bhattacharjee, A.K., Kenne, L., Kenny, C.P. and Calver, G. (1980) The R-type lipopolysaccharides ofNeisseria meningitidis. Can. J. Biochem. 58, 128–136.CrossRefGoogle Scholar
  20. Jennings, H.J., Johnson, K.G. and Kenne, L. (1983) The structure of an R-type oligosaccharide core obtained from some lipopolysaccharides ofNeisseria meningitidis. Carbohydr. Res. 121, 233–241CrossRefGoogle Scholar
  21. Jennings, H.J., Lugowski, C. and Ashton, F.E. (1984) Conjugation of meningococcal lipopolysaccharide R-type oligosaccharides to tetanus toxoid as route to a potential vaccine against group BNeisseria meningitidis. Infect. Immun. 43, 407–412.Google Scholar
  22. John, C.M., Griffiss, J.M., Apicella, M.A., Mandrell, R.E. and Gibson, B.W. (1991) The structural basis for pyocin-resistance inNeisseria gonorrhoeaelipooligosaccharides.J. Biol. Chem., 266,19303–19311.PubMedGoogle Scholar
  23. Jones, D. (1995) Epidemiology of meningococcal disease in Europe and the USA in Meningococcal disease (ed Cartwright, K.) Johns Wiley & Sons, New York, NY, pp. 147–158Google Scholar
  24. Jones, D M., Borrow, R., Fox, A.J., Gray, S., Cartwright, K.A. and Poolman, J.T. (1992) The lipooligosaccharide immunotype as a virulence determinant inNeisseria meningitidis. Microb. Pathogen. 13, 219–224.CrossRefGoogle Scholar
  25. Kasai, K., Galton, J., Terasaki, P.I., Wakisaka, A., Kawahara, M., Root, T., and Hakomori, S.I. (1985) Tissue distribution of the Pkantigen as determined by a monoclonal antibody.J. Immunogenet,12,213–220.PubMedCrossRefGoogle Scholar
  26. Kelm, S., Schauer, R., Manuguerra, J.-C., Gross, H.-J., and Crocker, P.R. (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22.Glycoconj. J. 11,576–585.PubMedCrossRefGoogle Scholar
  27. Kim, J.J., Zhou, D., Mandrell, R.E. and Griffiss, J.M. (1992) Effect of exogenous sialylation of the lipooligosaccharide ofNeisseria gonorrhoeaeon opsonophagocytosis.Infect. Immun.,60,4439–4442.PubMedGoogle Scholar
  28. Kim, J.J., Phillips, N.J., Gibson, B.W., Griffiss, J.M. and Yamasaki, R. (1994) Meningococcal group A lipooligosaccharides (LOS): preliminary structural studies and characterization of serotype-associated and conserved LOS epitopes.Infect. Immun. 62, 1566–1575.PubMedGoogle Scholar
  29. Knibbs, R.N., Goldstein, I.J., Ratcliffe, R.M. and Shibuya, N. (1991) Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin fromMaackia amurensis. J. Biol. Chem. 266, 83–88.Google Scholar
  30. Kogan, G., Uhrin, D., Brisson, J.-R., and Jennings, H. J. (1997) Structural basis ofNeisseria meningitidisimmunotypes including the L4 and L7 immunotypes.Carbohydr. Res.,298,191–199.PubMedCrossRefGoogle Scholar
  31. Kulshin, V.A., Zahringer, U., Lindner, B., Frasch, C.E., Tsai, C.M., Dmitriev, B.A. and Rietschel, E.T. (1992) Structural characterization of the lipid A component of pathogenicNeisseria meningitidis.J. Bacteriol.,174,1793–1800.PubMedGoogle Scholar
  32. Lund, B., Lindberg, F., Marklund, B.I., Normark, S. (1987) the PapG protein is the a-Dgalactopyranosyl(1->4)f -D-galactopyranose-binding adhesin of uropathogenicEscherchia coll. Proc. Nat’l. Acad. Sci. USA 84, 5898–5902.CrossRefGoogle Scholar
  33. Macher, B.A. and Klock, J.C. (1980) Isolation and Chemical Characterization of Neutral Glycosphingolipids of Human Neutrophils.J. Biol. Chem. 255, 2092–2096.PubMedGoogle Scholar
  34. Mandrell, R.E (1992) Further antigenic similarities ofNeisseria gonorrhoeaelipooligosaccharides and human glycosphingolipids.Infect. Immun.,60,3017–3020.PubMedGoogle Scholar
  35. Mandrell, R.E., Griffiss, J.M. and Macher, B.A. (1988) Lipooligosaccharides (LOS) ofNeisseria gonorrhoeaeandNeisseria meningitidishave components that are immunochemically similar to precursors of human blood group antigens.J. Exp. Med.,168,107–126.PubMedCrossRefGoogle Scholar
  36. Mandrell, R.E. and Apicella, M.A. (1993) Lipo-oligosaccharides (LOS) of Mucosal Pathogens: Molecular Mimicry and Host-Modification of LOS.Immunobiol. 187, 382–402.CrossRefGoogle Scholar
  37. Mandrell, R.E., Griffiss, J.M., Smith, H. and Cole, J.A. (1993) Distribution of a lipooligosaccharide-specific sialyltransferase in pathogenic and non-pathogenicNeisseria. Micro. Pathogen.14,315–327.CrossRefGoogle Scholar
  38. Mandrell, R.E., Kim, J.J., John, C.M., Gibon, B.W., Sugai, J.V., Apicella, M.A., Griffiss, J.M. and Yamasaki, R. (1991) Endogenous sialylation of the lipooligosaccharides ofNeisseria meningitidis. J. Bacteriol. 173, 2823–2832.Google Scholar
  39. Mandrell, R.E. and Zollinger, W.D. (1977) Lipopolysaccharide serotyping ofNeisseria meningitidisby hemagglutination inhibition.Infect. Immun.,16,471–475.PubMedGoogle Scholar
  40. Masoud, H., Perry, M.B., Brisson, J-R., Uhrin, D., and Richards, J.C. (1994) Structural elucidation of the backbone oligosaccharide for the lipopolysaccharide ofMoraxella catarrhalisserotype.Can. J. Chem.,72,1466–1477.CrossRefGoogle Scholar
  41. Masoud, H., Moxon, E.R., Martin, A., Krajcarski D.T., and Richards, J.C. (1997) Structural elucidation of the vaiable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzaeserotype b strain Eagan. Biochemistry 36,2091–2103.PubMedCrossRefGoogle Scholar
  42. Melaugh, W., Phillips, N.J., Camagnari, A.A., Karalus, R. and Gibson, B.W. (1992) Partial characterization of major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease.J. Biol. Chem. 267, 13434–13439.Google Scholar
  43. Michon, F., Beurret, M., Gamian, A., Brisson, J-R., and Jennings, J.H. (1990) Structure of the L5 lipopolysaccharide core oligosaccharides ofNeisseria meningitidis. J. Biol. Chem. 265, 7243–7247.Google Scholar
  44. Miller, R.L., Collawn, J.F., amd Fish W.W. (1982) Purification and macromolecular properties of a sialic acid-specific lectin from slugLimax flavus. J. Biol. Chem. 257, 7574–7580.Google Scholar
  45. Moran, A.P., Appelmelk, B.J., and Aspinall, G.O. (1996) Molecular mimicry of host structures by lipopolysaccharides ofCampylobacterandHelicobacterspp.: implications in pathogenesis.J. Endotoxin Res.,3,521–531.Google Scholar
  46. Moran, E.E., Brandt, B.L. and Zollinger, W.D. (1994) Expression of the L8 lipopolysaccharide determinant increases the sensitivity ofNeisseria meningitidisto serum bactericidal activity.Infect. Immun.,62,5290–5295.PubMedGoogle Scholar
  47. Parsons, N.J., Andrade, J.R., Patel, P.V., Cole, J.A. and Smith, H. (1989) Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5’-monophospho-N-acetyl neuraminic acid.Microb. Pathog. 7, 63–72.PubMedCrossRefGoogle Scholar
  48. Pavliak, V., Brisson, J-R., Michon, F., Uhrin, D. and Jennings, H.J. (1993) Structure of the sialylated L3 lipopolysaccharide ofNeisseria meningitidis. J. Biol. Chem. 268, 14146–14152.PubMedGoogle Scholar
  49. Peltola, H. (1983) Meningococcal disease: still with us.Rev. Infect. Dis. 5, 71–91.PubMedCrossRefGoogle Scholar
  50. Preston, A., Mandrell, R.E., Gibson, B.W., and Apicella, M.A. (1996) The lipooligosaccharides of pathogenic gram-negative bacteria.Critical Reviews in Micro. 22(3), 139–180CrossRefGoogle Scholar
  51. Quakyi, E., Hochstein, H.D., and Tsai, C.-M. (1997) Modulation of the biological activities of meningococcal endotoxine by association with outer membrane proteins is not inevitably linked to toxicity.Infect. Immun.,65,1972–1979.PubMedGoogle Scholar
  52. Rest, R.F. and Frangipane, J.V., (1992) Growth ofNeisseria gonorrhoeaein CMP-Nacetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils.Infect. Immun.,60,989–997.PubMedGoogle Scholar
  53. Rest, R.F., and Mandrell, R.E. (1995)Neisseriasialyltransferases and their role in pathogenesis.Microb. Pathog. 19, 379–390.PubMedCrossRefGoogle Scholar
  54. Schneider, H., Hale, T.L., Zollinger, W.D., Seid, R.C., Hammack, C.A. and Griffiss, J.M. (1984) Heterogeneity of molecular size and antigenic expression within the lipooligosaccharides of individual strains ofNeisseria gonorrhoeaeandNeisseria meningitidis. Infect. Immun.,45,544–549.Google Scholar
  55. Schneider, H., Griffiss, J.M., Boslego, J.W., Hitchcock, P.J., Zahos, K.M., and Apicella, M.A. (1991) Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men.J. Exp. Med. 174, 1601–1605.PubMedCrossRefGoogle Scholar
  56. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B. and Peumans, W.J. (1987) The elderberry(Sambucus nigra L.)bark lectin recognizes the NeuNAc(a26)Gal/Ga1NAc sequence.J. Biol. Chem.,262,1596–1601.PubMedGoogle Scholar
  57. Smith, H., Parsons, N.J., and Cole, J.A., (1995) Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity.Microb. Pathog. 19, 365–377.PubMedCrossRefGoogle Scholar
  58. Spitalnik, S.L., Schwartz, J.F., Magnani, J.L., Roberts, D.D., Spitalnik, P.F., Civin, C.I. and Ginsberg, V. (1985) Anti-My-28, an antigranulocyte mouse monoclonal antibody, binds to a sugar sequence in lacto-N-neotetraose.Blood. 66, 319–326.PubMedGoogle Scholar
  59. Tikhomirov, E., Santamaria, M., and Esteves, K. (1997) Meningococcal disease: public health burden and control.World Health Stat. Quart 50, 170–177.Google Scholar
  60. Tsai, C.-M. and Frasch, C.E. (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels.Anal. Biochem. 119, 115–119.PubMedCrossRefGoogle Scholar
  61. Tsai, C.-M., Boykins, R. and Frasch, C.E. (1983) Heterogeneity and variation amongNeissèria meningitidislipopolysaccharides.J. Bacteriol.,155,498–504.PubMedGoogle Scholar
  62. Tsai, C.-M., Mocca, L.F. and Frasch, C.E. (1987) Immunotype epitopes ofNeisseria meningitidislipooligosaccharide type 1 through 8.Infect. Immun.,55,1652–1656.PubMedGoogle Scholar
  63. Tsai, C.-M., and Civin, C.V. 1991. Eight lipooligosaccharides ofNeisseria meningitidisreact with monoclonal antibody which binds lacto-N-neotetraose (Ga1fl1–4G1cNAcfl13Ga1 fl 1–4G1c).Infect. Immun.,59,3604–3609.PubMedGoogle Scholar
  64. Tsai, C.M., Chen, W. and Balakonis, P.A. (1995)Neisseria meningitidislipooligosaccharides mimic glycolipids and glycoproteins in having NeuNAca2–3Ga1131–4G1cNAc sequence. Glycoconjugate J.,12,562.Google Scholar
  65. Tsai, C.M., Chen, W. and Balakonis, P.A. (1998) Characterization of terminal NeuNAca23Galfl1–4GlcNAc sequence in lipooligosaccharides ofNeisseria meningitidis. Glycobiology 8, 359–365.CrossRefGoogle Scholar
  66. Verheul, A.F.M., Snippe, H, and Poolman, J.T., (1993) Meningococcal lipopolysaccharides: virulence factor and potential vaccine component.Microbiol Rev 57, 34–49.PubMedGoogle Scholar
  67. Virji, M., Weiner, J.N., Lindberg, A.A., and Moxon, E.R., (1990) Antigenic similarities in lipopolysaccharides ofHaemophilusandNeisseriaand expression of a digalactoside structure also present on human cells.Microb. Pathog.,9,441–450.PubMedCrossRefGoogle Scholar
  68. Vogel, U., Weinberger, A., Frank, R., Muller, A., Kohl, J., Atkinson, J.P., and Frosch, M. (1997) Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup BNeisseria meningitidis. Infect. Immun. 65, 4022–4029.Google Scholar
  69. Wakarchuk, W.W., Gilbert, M., Martin, A., Wu,Y., Brisson, J-R., Thibault, P., and Richards, J.C. (1998) Structure of an a-2,6-sialylated lipooligosaccharide fromNeisseria meningitidisimmunotype L1.Eur. J. Biochem.,254,626–633.PubMedCrossRefGoogle Scholar
  70. Wakarchuk, W.W., Martin, A., Jennings, M.P., Moxon, E.R., and Richards, J.C. (1996) Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure inNeisseria meningitidis. J. Biol. Chem. 271, 19166–19173.Google Scholar
  71. Wang, W.-C., and Cummings, R.D., (1988) The immobilized leukoagglutinin from the seeds ofMaackia amurensisbinds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked a-2,3 to penultimate galactose residues.J. Biol. Chem.,263,4576–4585.PubMedGoogle Scholar
  72. Wetzler, L.M., Barry, K., Blake, M.S. and Gotschlich, E.C. (1992) Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera.Infect. Immun. 60, 39–43.PubMedGoogle Scholar
  73. Yamasaki, R., Bacon, B.E., Nasholds, W., Schneider, H., and Griffiss, J.M. (1991) Structural determination of oligosaccharides derived from lipooligosaccharide ofNeisseria gonorrhoeaeF62 by chemical, enzymatic, and two-dimensional NMR methods.Biochem.,30,10566–10575.CrossRefGoogle Scholar
  74. Yamasaki, R., Griffiss, J.M., Quinn, K.P. and Mandrell, R.E. (1993) Neuraminic acid is a2–3 linked in the lipooligosaccharide ofNeisseria meningitidisserogroup B strain 6275. IBacteriol.,175,4565–4568.Google Scholar
  75. York, W.S., Darvill, A.G., McNeil, M., Stevenson, T.T., and Albersheim, P. (1986) Isolation and characterization of plant cell walls and cell wall components.Methods Enzymol. 118, 3–40CrossRefGoogle Scholar
  76. Zollinger, W.D. and Mandrell, R.E. (1977) Outer membrane protein and lipopolysaccharide serotyping ofNeisseria meningitidisby inhibition of a solid-phase radioimmunoassay.Infect. Immun.,18,424–433.PubMedGoogle Scholar
  77. Zollinger, W.D. and Mandrell, R.E. (1980) Type-specific antigens of group ANeisseria meningitidis:lipopolysaccharide and heat-modifiable outer membrane proteins.Infect. Immun.,28,451–458.PubMedGoogle Scholar
  78. Zollinger, W.D., (1997) New and improved vaccines against meningococcal disease. In: Levine, M.M., Woodrow, G.C., eds. New Generation Vaccines, 2ndedition. Marcel Dekker, Inc. New York, pp.469–488.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Chao-Ming Tsai
    • 1
  1. 1.Division of Bacterial ProductsCenter for Biologics Evaluation and Research, FDABethesdaUSA

Personalised recommendations