Skip to main content

Analysis of A Murine Anti-Ganglioside Gd2 Monoclonal Antibody Expressing Both IgG2a and IgG3 Isotypes: Monoclonality, Apoptosis Triggering, and Activation of Cellular Cytotoxicity on Human Melanoma Cells

  • Chapter
The Molecular Immunology of Complex Carbohydrates —2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 491))

Abstract

In this study we have documented a hybridoma secreting an unusual MAb, which expresses both IgG3 and IgG2a subclasses with a A -light chain. How this dual expression of isotypes was exactly brought about is not clear. To resolve this problem, it will have to wait the complete sequence analysis the heavy chain gene of MAb 9C4. Although the expression of IgG2a was about 50% that of IgG3, antibody titration studies showed the major binding affinity of MAb 9C4 to GD3-positive cells being mostly contributed by the IgG3 rather than IgG2a part of the antibody. This antibody could induce apoptosis in melanoma cells in 10 - 15% of cells in vitro, but the generality of this phenomenon is yet to be confirmed by the use of different cell targets and different anti-GD2 MAbs other than 9C4. Aside from the demonstrated indirect killing mechanisms of many anti-GD2 MAbs through CDC and ADCC, MAb 9C4 induction of apoptosis represents an alternative mechanism of tumor cell killing, by which direct killing of anti-GD2 antibody takes its effect. This apoptotic effect was demonstrated for the first time with an anti-ganglioside monoclonal antibody. From the therapeutic point of view, the cytolytic activity of MAb 9C4-targeted ADCC/LAK killing against GD2-positive tumor cells to be more effective than that of LAK alone and a possibility for dendritic cells to effectively acquire antigen through pulsing with MAb-induced apoptotic cells are both of great clinical importance. Further studies are warranted aiming at elucidating the molecular basis of bi-isotypic specificity and aberrant isotype switching, molecular pathway of anti-GD2 antibodyinduced apoptosis, and ways to improve clinical utility of this unusual hybridomalMAb

Article FootNote

To whom correspondance should be addressed. FAX: 886-3-328-0170;E-mail: liaosk@mail.cgu.edu.tw The authors wish to thank Miss Yu-Ping Perng for technical assistance, Dr. Robert K. Yu (Virginia Commonwealth University, Richmond, VA) for the confirmation of target structures recognized by the MAbs Mel-11 and Me1-22, Dr. Alice L. Yu (University of California at San Diego, San Diego, CA) for providing MAb 14.G2a to GD2 for a comparative study, and Dr William E. Grizzle (Southern Division of Cooperative Human Tissue Network, Birmingham, LA) for providing human tissues for this study. This work was supported in part by the National Science Council of the Republic of China (NSC-87-2314-B182-047) and the Chang Gung Medical Research Fund (CMRP-363).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakomori, S. (1981) Glycosphingolipids in cellular interactions, differentiation and oncogenesis. Ann. Rev. Biochem., 33: 733.

    Article  Google Scholar 

  2. Leeden, R.W. and Yu, R.K. (1982) Ganglioside structure, isolation and analysis, in: Methods in Enzymology, Vol 83, part D, V. Ginsburg, ed., pp139–191, Academic Press, New York.

    Google Scholar 

  3. Hakomori, S. and Kanagi, G. (1983) Glycosphingolipids as tumor-associated and differentiation markers. J. Natl. Cancer Instit., 71: 231.

    CAS  Google Scholar 

  4. Werkmeister, J.A., Triglia, T, Mackay, I.R., Dowling, J.P., Varigos, G.A., Morstyn, G., Burns, G.F. (1987) Fluctuations in expression of glycolipid antigen associated with differentiation of melanoma cells monitored by monoclonal antibody, Leo Mel 3. Cancer Res., 47: 225.

    PubMed  CAS  Google Scholar 

  5. Portoukalian, J., Zwingelstein, G., Dore, J.F. (1979) Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur. J. Biochem., 94: 19.

    Article  PubMed  CAS  Google Scholar 

  6. Cahan, L.D., Irie, R.F., Singh, F., Cassidneti, A., Paulson, J.C. (1982) Identification of a human neuroblastoma tumor antigen (OFA-1–2) as ganglioside GD2. Proc. Natl. Acad. Sci. USA, 79: 7629.

    Article  PubMed  CAS  Google Scholar 

  7. Cheresh, D.A., Harper, J.R., Schulz, G., Reisfeld, R.A. (1984) Localization of the gangliosides G.D2 and GD3 in adhesion plaques and on the surface of human melanoma cells, Proc. Natl. Acad. Sci. USA, 81: 5767.

    Article  CAS  Google Scholar 

  8. Ladisch, S., Wu, Z.L., Feig, S., Ulsh, L., Schwartz, E., Floutsis, G., Wiley, F., Lenarsky, C., Seeger, R. (1987) Shedding of GD2 ganglioside by human neuroblastoma. Int. J. Cancer, 39: 73.

    Article  PubMed  CAS  Google Scholar 

  9. Chapman, P.B., Lonberg, M., Houghton, A.N. (1990) Light chain of an IgG3 anti-GD3 monoclonal antibody and the relationship among avidity, effector functions, tumor targeting and antitumor activity. Cancer Res., 50: 1503.

    PubMed  CAS  Google Scholar 

  10. Schulz, G., Cheresh, D.A., Varki, N.M., Yu, A., Staffileno, L.K., Reisfeld, R.A. (1984) Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res., 44: 5914.

    PubMed  CAS  Google Scholar 

  11. Cheung, N.K., Sarinen, V.M., Neely, J., Landmeier, B., Donavan, D., Coccia, P.E. (1985) Monoclonal antibodies to glycolipid antigen on human neuroblastoma cells. Cancer Res., 45: 2642

    PubMed  CAS  Google Scholar 

  12. Wu, Z.L., Schwartz, E., Seeger, R., Ladisch, S. (1986) Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res., 46: 440.

    PubMed  CAS  Google Scholar 

  13. Lipinski, M., Braham, K., Philip, I., Wiels, J., Philip, T., Goridis, C., Lenoir, G.M., Tursz, T. (1987) Neuroectoderm-associated antigens on Ewing’s sarcoma cell lines. Cancer Res., 47: 183.

    PubMed  CAS  Google Scholar 

  14. Liao, S-K., Perng, Y-P., Lee, L-A., Chang, K.S.S., Lai, G-M., Wong, E., Ho, Y-S. (1996) Newly established MST-1 tumor cell line and tumor-infiltrating lymphocyte culture from a patient with soft tissue melanoma (clear cell sarcoma) and their potential applications to patient immunotherapy. Eur. J. Cancer, 32A: 346.

    Article  PubMed  CAS  Google Scholar 

  15. Kawashima, I., Tada, N., Ikegami, S., Nakamura, S., Ueda, R., Tai, T. (1988) Mouse monoclonal antibodies detecting disialogangliosides on mouse and human T lymphomas. Int. J. Cancer, 41: 267.

    Article  PubMed  CAS  Google Scholar 

  16. Honsik, C.J., Jung, G., Reisfeld, R.A. (1986) Lymphokine-activated killer cells targeted by monoclonal antibodies to disialo-GD2 and GD3 specifically lyse human tumor cells of neuroectodermal origin. Proc. Natl. Acad. Sci. USA, 83: 7893.

    Article  PubMed  CAS  Google Scholar 

  17. Mujoo, K., Kipps, T.J., Yang, H.M., Cheresh, D.A., Wargalla, U., Sander, D.J., Reisfeld. R.A. (1989) Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal anti-ganglioside GD2 antibody 14.18. Cancer Res., 49: 2857.

    PubMed  CAS  Google Scholar 

  18. Mayer, P., Handgretinger, R., Bruchelt, G., Schaber, B., Rassner, G., Fieribeck, G.(1994) Activation of cellular cytotoxicity and complement-mediated lysis of melanoma and neuroblastoma cells in vitro by murine anti-ganglioside antibodies MB3.6 and 14.G2a. Melanoma Res., 4: 101.

    Article  PubMed  CAS  Google Scholar 

  19. Hank, J.A., Robinson, R.R., Surfus, J., Mueller, B.M., Reisfeld, R.A., Cheung, N.K., Sondel, P.M. (1990) Augmentation of antibody dependent cell-mediated cytotoxicity follwing in vivo therapy with recombinant interleukin 2. Cancer Res., 50: 5234.

    PubMed  CAS  Google Scholar 

  20. Chueng, N.K., Lazarus, H., Miraldi, F.D., Abramowsky, C.R., Kallick, S., Sarinen, U.M., Spitzer, T., Strandjord, S.E., Coccia, P.E., Berger, N.A. (1987) Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study on patients with malignant melanoma. 1. J. Clin. Oncol., 5:1430.

    Google Scholar 

  21. Frost, J.D., Hank, J.A., Reaman, G.H., Frierdich, S., Seeger, R.C., Gan, J., Anderson, P.M., Ettinger, L.J., Cairo, M.S., Blazar, B.R., Krailo, M.D., Matthay, K.K., ReisfeldR.A., Sonde], P.M. (1997) A phase 1/IB trial murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children’s cancer Group. Cancer, 80:317.

    Article  PubMed  CAS  Google Scholar 

  22. Yu, A.L., Uttenreuther-Fischer, M.M., Huang, C.S., Tsai, C.C., Gillies, S.D., Reisfeld, R.A., Kung, F.H. (1998) Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch 14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol., 16: 21169.

    Google Scholar 

  23. Liao, S-K., Meranda, C., Avner, B.P., Romano, T., Hussein, S., Kimbro, B., Oldham, R.K. (1989) Immunohistochemical phenotyping of human solid tumors with monoclonal antibodies in devising biotherapeutic strategies. Cancer Immunol. lmmunother., 28: 77.

    CAS  Google Scholar 

  24. Liao, S-K., Khosravi, M.J., Brown, J.P., Kwong, P.C. (1987) Difference in cell binding patterns of two monoclonal antibodies recognizing two distinct epitopes on human melanoma-associated oncofetal antigen. Mol. Immunol., 24: 1.

    CAS  Google Scholar 

  25. Ishizuka, H., Watanabe, M., Kubota, T., Matsuzaki, S.W., Otani, Y., Kitajima, M. (1998) Antitumor activity of murine monoclonal antibody NCC-ST-421 on human cancer cells by inducing apoptosis. Anticancer Res., 18: 2513.

    PubMed  CAS  Google Scholar 

  26. DeMaria, R., Lenti, L., Malisan, F., d’Agostino, F., Tomassini, B., Euner, A., Rippo, M.R., Testi, R. (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science, 277: 1652.

    Article  CAS  Google Scholar 

  27. Hersey, P., Jamal, O., Henderson, C., Zardarrl, D., D’Alessandro, G. (1988) Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, nevi, primary and metastatic melanoma. Int. J. Cancer, 41: 338.

    Article  Google Scholar 

  28. Perng, Y-P., Lin, C-C., Perng, I-M., Shen, Y-C., Chuang, C-K., Liao, S-K. (1997) Culture medium induced morphological changes of melanoma cells associated with change in sensitivity to lysis by lymphokine-activated killer cells. Cancer Biother. Radiopharmaceut., 12: 317.

    CAS  Google Scholar 

  29. Saleh, M.N., Khazaeli, M.B., Wheler, R.H., Allen, L., Tilden, A.B., Grizzle, W., Reisfeld, R.A., Yu, A.L., Gillies, S.D., LoBuglio, A.F. (1992) Phase I trial of the chimeric anti-GD2 monoclonal antibody ch 14.18 in patients with malignant melanoma. Hum. Antibodies Hybridomas, 3: 19

    CAS  Google Scholar 

  30. Becker, J.C., Pancook, J.D., Gillies, S.D., Mendelsohn, J., Reisfeld, R.A. (1996) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc. Natl. Acad. Sci. USA, 93: 2702.

    Article  PubMed  CAS  Google Scholar 

  31. Pagnan, G., Montaldo, P.G., Pastorino, F., Raffaghello, L., Kirchmeier, M., Allen, T.M., Ponzoni, M. (1999) GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. Int. J. Cancer, 81: 268.

    Article  PubMed  CAS  Google Scholar 

  32. Hoon, D.S., Ando, I., Sviland, G., Tsuchida, T., Okun, E., Morton, D.L., Irie, R.F. (1989) Ganglioside GM2 expression on human melanoma cells correlates with sensitivity to lymphokine-activated killer cells. Int. J. Cancer, 43: 857.

    Article  PubMed  CAS  Google Scholar 

  33. Albert, M.L., Sauter, B., Bhardwaj, N. (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature (London), 392:86.

    Google Scholar 

  34. Nestle, F.O., Burg, G., Dummer, R. (1999) New perspective on immunobiology and immunotherapy of melanoma. Immunol. Today, 20:5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, CC., Shen, YC., Chuang, CK., Liao, SK. (2001). Analysis of A Murine Anti-Ganglioside Gd2 Monoclonal Antibody Expressing Both IgG2a and IgG3 Isotypes: Monoclonality, Apoptosis Triggering, and Activation of Cellular Cytotoxicity on Human Melanoma Cells. In: Wu, A.M. (eds) The Molecular Immunology of Complex Carbohydrates —2. Advances in Experimental Medicine and Biology, vol 491. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1267-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1267-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5469-7

  • Online ISBN: 978-1-4615-1267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics