Skip to main content

Tumor-Associated Carbohydrate Antigens Defining Tumor Malignancy: Basis for Development of Anti-Cancer Vaccines

  • Chapter
The Molecular Immunology of Complex Carbohydrates —2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 491))

Abstract

Tumors expressing a high level of certain types of tumor-associated carbohydrate antigens (T ACAs) exhibit greater metastasis and progression than those expressing low level of TACAs, as reflected in decreased patient survival rate. Well-documented examples of such TACAs are: (i) H/Ley/ILea in primary non-small cell lung carcinoma; (ii) sialyl-Lex(SLex) and sialyl-Lea (SLea) in various types of cancer; (iii) Tn and sialyl-Tn in colorectal, lung, breast, and many other cancers; (iv) GM2, GD2, and GD3 gangliosides in neuroectodermal tumors (melanoma and neuroblastoma); (v) globo-H in breast, ovarian, and prostate cancer; (vi) disialylgalactosylgloboside in renal cell carcinoma.

Some glycosylations and TACAs suppress invasiveness and metastatic potential. Welldocumented examples are: (i) blood group A antigen in primary lung carcinoma; (ii) bisecting β1 →4G1cNAc ofN-linked structure in melanoma and other cancers; (iii) galactosylgloboside (GaIGb4) in seminoma.

The biochemical mechanisms by which the above glycosylation changes promote or suppress tumor metastasis and invasion are mostly unknown. A few exceptional cases in which we have some knowledge are: (i) SLex and SLea function as E-selectin epitopes promoting tumor cell interaction with endothelial cells; (ii) some tumor cells interact through binding ofTACA to specific proteins other than selectin, or to specific carbohydrate expressed on endothelial cells or other target cells (carbohydrate-carbohydrate interaction); (iii) functional modification of adhesive receptor (integrin, cadherin, CD44) by glycosylation.

So far, a few successful cases of anti-cancer vaccine in clinical trials have been reported, employing T ACAs whose expression enhances malignancy. Examples are STn for suppression of breast cancer, GM2 and GD3 for melanoma, and globo-H for prostate cancer. Vaccine development can be extended using other T ACAs, with the following criteria for success: (i) the antigen is expressed highly on tumor cells; (ii) high antibody production depending on two factors: (a) clustering of antigen used in vaccine; (b) choice of appropriate carrier protein or lipid; (iii) high T cell response depending on choice of appropriate carrier protein or lipid; (iv) expression of the same antigen in normal epithelial tissues (e.g., renal, intestinal, colorectal) may not pose a major obstacle, i.e., these tissues are not damaged during immune response.

Idiotypic anti-carbohydrate antibodies that mimic the surface profile of carbohydrate antigens, when administered to patients, elicit anti-carbohydrate antibody response, thus providing an effect similar to that of T ACAs for suppression of tumor progression. An extension of this idea is the use of peptide mimetics ofTACAs, based on phage display random peptide library. Although examples are so far highly limited, use of such “mimotopes” as immunogens may overcome the weak immunogenicity ofTACAs in general.

Article FootNote

Studies by the author and his colleagues cited in this review were supported by Outstanding Investigator Grant CA-42S0S from the National Cancer Institute (NIH)

Article FootNote

I thank Dr. Stephen Anderson for scientific editing and preparation of the manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakomori, S., Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolismCancer Res. 565309 (1996).

    PubMed  CAS  Google Scholar 

  2. Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R., and Harris, C. C., Database of p53 gene somatic mutations in human tumors and cell linesNucleic Acid Res. 223551 (1994).

    PubMed  CAS  Google Scholar 

  3. Marx, J., New tumor suppressor may rival p53Science 264344 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. Ko, L. J., and Prives, C., p53: Puzzle and paradigmGenes & Development 101054 (1996).

    Article  CAS  Google Scholar 

  5. Levine, A. J., p53, the cellular gatekeeper for growth and divisionCell 88323 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. Kinzler, K. W., and Vogelstein, B., Landscaping the cancer terrainScience 2801036 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Disis, M. L., and Cheever, M. A., HER-2/neu protein: A target for antigen-specific immunotherapy of human cancerAdv.Cancer Res. 71343 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. Kim, Y. S., Yuan, M., Itzkowitz, S. H., Sun, Q., Kaizu, T., Palekar, A., Trump, B. F., and Hakomori, S., Expression of Ley and extended Ley blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissuesCancer Res. 465985 (1986).

    PubMed  CAS  Google Scholar 

  9. Itzkowitz, S. H., Yuan, M., Montgomery, C. K., Kjeldsen, T., Takahashi, H. K., Bigbee, W. L., and Kim, Y. S., Expression of Tn, sialosyl-Tn, and T antigens in human colon cancerCancer Res. 49197 (1989).

    PubMed  CAS  Google Scholar 

  10. Muramatsu, T., Carbohydrate signals in metastasis and prognosis of human carcinomasGlycobiology3, 291 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. Oh-Uti, K., Polysaccharides and a glycidamin in gastric cancer tissueTohoku lExp.Med. 51297 (1949).

    Article  Google Scholar 

  12. Masamune, H., Kawasaki, H., Abe, S., Oyama, K., and Yamaguchi, Y., Molisch-positive mucopolysaccharides of gastric cancers as compared with the corresponding components of gastric mucosae. First report: Fractionation procedure of gastric cancer and gastric mucosaTohoku J.Exp.Med. 6881 (1958).

    Article  PubMed  CAS  Google Scholar 

  13. Davidsohn, I., Kovarik, S., and Lee, C. L., A, B, and O substances in gastrointestinal carcinomaArch.Pathol. 81381 (1966).

    PubMed  CAS  Google Scholar 

  14. Davidsohn, I., and Ni, L. Y., Loss of isoantigens A, B, and H in carcinoma of the lungAm.JPathol. 57307 (1969).

    CAS  Google Scholar 

  15. Davidsohn, I., Kovarik, S., and Ni, Y., Isoantigens A, B, and H in benign and malignant lesions of the cervixArch.Pathol.87, 306 (1969).

    PubMed  CAS  Google Scholar 

  16. Dabelsteen, E., Roed-Petersen, B., and Pindborg, J. J., Loss of epithelial blood group antigens A and B in oral premalignant lesionsActa Pathol.Microbiol.Scand. 83292 (1975).

    CAS  Google Scholar 

  17. Orntoft, T. F., Wolf, H., Clausen, H., Dabelsteen, E., and Hakomori, S., Blood group ABH-related antigens in normal and malignant bladder urothelium: Possible structural basis for the deletion of type-2 chain ABH antigens in invasive carcinomasInt.J.Cancer 43774 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. Davidsohn, I., and Stejskal, R., Tissue antigens A, B and H in health and diseaseHaematologia 6177 (1972).

    PubMed  CAS  Google Scholar 

  19. Lee, J. S., Ro, J. Y., Sahin, A. A., Hong, W. K., Brown, B. W., Mountain, C. F., and Hittelman, W. N., Expression of blood-group antigen A: A favorable prognostic factor in non-small-cell lung cancerN.Engl.J.Med. 3241084 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto, H., Muramatsu, H., Shimotakahara, T., Yanagi, M., Nishijima, H., Mitani, N., Baba, K., Muramatsu, T., and Shimazu, H., Correlation of expression of ABH blood group carbohydrate antigens with metastatic potential in human lung carcinomasCancer 7275 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. Ichikawa, D., Handa, K., Withers, D. A., and Hakomori, S., Histo-blood group A/BversusH status of human carcinoma cells as correlated with haptotactic cell motility: Approach withAandBgene transfectionCancer Res. 57 3092 (1997).

    PubMed  CAS  Google Scholar 

  22. Ichikawa, D., Handa, K., and Hakomori, S., Histo-blood group A/B antigen deletion/ reductionvs.continuous expression in human tumor cells as correlated with their malignancyInt.J.Cancer 76 284 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. Iwamoto, S., Withers, D. A., Handa, K., and Hakomori, S., Deletion of A-antigen in human cancer cell lines is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoterGlycoconj.J. in press(1999).

    Google Scholar 

  24. Fernandes, B., Sagman, U., Auger, M., Demetrio, M., and DennisJ.W.,131–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasiaCancer Res. 51718 (1991).

    PubMed  CAS  Google Scholar 

  25. Dennis, J. W., and Laferté, S., Oncodevelopmental expression of -G1cNAcβ1–6Mana1–6Manβ-6 branching of Asn-linked oligosaccharides in human breast carcinomasCancer Res. 49945 (1989).

    Google Scholar 

  26. Schachter, H., Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharidesBiochem.Cell Biol. 64163 (1985).

    Article  Google Scholar 

  27. Taniguchi, N., Yoshimura, M., Miyoshi, E., Ihara, Y., Nishikawa, A., and Fujii, S., Remodeling of cell surface glycoproteins by N-acetylglucosaminyltransferase III gene transfection: Modulation of metastatic potentials and down regulation of hepatitis B virus replicationsGlycobiology 6691 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S., and Taniguchi, N., Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfectionProc.Natl.Acad.Sci.USA 928754 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. Cummings, R. D., and Kornfeld, S., Characterization of structural determinants required for the high-affinity interaction of asparagine-linked oligosaccharides with immobilizedPhaseolus vulgarisleukoagglutinating and erythroagglutinating lectinsJ.Biol.Chem. 257 11230 (1982).

    PubMed  CAS  Google Scholar 

  30. Seelentag, W. K. F., Li, W.-P., Schmitz, S.-F. H., Metzger, U., Aeberhard, P., Heitz, P. U., and Roth, J., Prognostic value of 131,6-branched oligosaccharides in human colorectal carcinomaCancer Res. 585559 (1998).

    PubMed  CAS  Google Scholar 

  31. Ohyama, C., Orikasa, S., Kawamura, S., Satoh, M., Saito, S., Fukushi, Y., Levery, S. B., and Hakomori, S., Galactosylgloboside expression in seminoma: Inverse correlation with metastatic potentialCancer 761043 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Akamatsu, S., Yazawa, S., Zenita, K., Matsumoto, H., Tachikawa, T., and Kannagi, R., Elevation of an a(1,3)fucosyltransferase activity correlated with apoptosis in the human colon adenocarcinoma cell line, HT-29Glycoconj.J. 131021 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. Hiraishi, K., Suzuki, K., Hakomori, S., and Adachi, M., Ley antigen expression is correlated with apoptosis (programmed cell death)Glycobiology3, 381 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. Thomsen, O., Ein vermehrungsfähiges Agens als Veränderer des isoagglutinatorischen Verhaltens der roten Blutkörperchen, eine bisher unbekannte Quelle der FehlbestimmungenZ.Immunit forsch. 5285 (1927).

    CAS  Google Scholar 

  35. Friedenreich, V., Untersuchungen über das von O. Thomsen beschriebene vermehrungsfähige Agens als Veränderer des isoagglutinatorischen Verhaltens der roten BlutkörperchenZ.Immunit.forsch. 5584 (1928).

    Google Scholar 

  36. Moreau, R., Dausset, J., Bernard, J., and Moullec, J., Anemie hemolytique acquise avec polyagglutinabilite des hematies par un nouveau factor present dans le serum humain normal (anti-Tn)Bull.Soc.Med.Hop.Paris73, 569 (1957).

    PubMed  CAS  Google Scholar 

  37. Dausset, J., Moullec, J., and Bernard, J., Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn)Blood 141079 (1959).

    PubMed  CAS  Google Scholar 

  38. Dahr, W., Uhlenbruck, G., and Bird, G. W. G., Cryptic A-like receptor sites in human erythrocyte glycoproteins: Proposed nature of Tn-antigenVox Sang. 2729 (1974).

    Article  PubMed  CAS  Google Scholar 

  39. Thomas, D. B., and Winzler, R. J., Structural studies on human erythrocyte glycoproteins: Alkali-labile oligosaccharidesJ.Biol.Chem. 2445943 (1969).

    PubMed  CAS  Google Scholar 

  40. Springer, G. F., and Desai, P. R., Interaction of blood-group MN-like cancer antigen and human cytotoxinNaturwissenschaften 6138 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. Springer, G. F., and Desai, P. R., Human blood-group MN and precursor specificities: Structural and biological aspectsCarbohydr.Res. 40183 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. Springer, G. F., T and Tn, general carcinoma autoantigensScience 2241198 (1984).

    Article  PubMed  CAS  Google Scholar 

  43. Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., and Hakomori, S., Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: Its identification as Tn antigenProc.Natl.Acad.Sci. USA 827039 (1985).

    Article  PubMed  Google Scholar 

  44. Takahashi, H. K., Metoki, R., and Hakomori, S., Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigenCancer Res. 484361 (1988).

    PubMed  CAS  Google Scholar 

  45. Nakada, H., Numata, Y., Inoue, M., Tanaka, N., Kitagawa, H., Funakoshi, I., Fukui, S., and Yamashina, I., Elucidation of an essential structure recognized by an anti-GalNAca-Ser(Thr) monoclonal antibody (MLS 128)J.Biol.Chem. 26612402 (1991).

    PubMed  CAS  Google Scholar 

  46. Brooks, S. A., and Leathem, A. J. C., Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumourLancet 33871 (1991).

    Article  PubMed  CAS  Google Scholar 

  47. Galea, M. H., Ellis, I. O., Bell, J., Elston, C. W., Blarney, R. W., and Baum, M., Prediction of lymph node involvement in breast cancerLancet338, 392 (1991).

    Article  Google Scholar 

  48. Taylor, C. W., Anbazhagan, R., Jayatilake, H., Adams, A., Gusterson, B. A., Price, K., Gelber, R. D., and Goldhirsch, A.Helix pomatiain breast cancerLancet 338580 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. Hirao, T., Sakamoto, Y., Kamada, M., Hamada, S., and Aono, T., Tn antigen, a marker of potential for metastasis of uterine cervix cancer cellsCancer 72154 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki, M., Yamato, T., and Nakanuma, Y., Expression of sialyl-Tn, Tn and T antigens in primary liver cancerPathol.Int. 49325 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. Nuti, M., Teramoto, Y. A., Mariani-Constantini, R., Hand, P. H., Colcher, D., and Schlom, J., A monoclonal antibody (B72.3) defines patterns of a novel tumor-associated antigen in human mammary carcinoma cell populationsJ.Inst.Cancer 29539 (1982).

    CAS  Google Scholar 

  52. Thor, A., Ohuchi, W., Szpak, C. A., Johnston, W. W., and Schlom, J., Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3Cancer Res. 463118 (1986).

    PubMed  CAS  Google Scholar 

  53. Kjeldsen, T. B., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H., and Hakomori, S., Preparation and characterization of monoclonal antibodies directed to the tumor-associated 0-linked associated 0-linked sialosyl-2→6 a-N-acetylgalactosaminyl (sialosyl-Tn) epitopeCancer Res. 482214 (1988).

    PubMed  CAS  Google Scholar 

  54. Kurosaka, A., Kitagawa, H., Fukui, S., Numata, Y., Nakada, H., Funakoshi, I., Kawasaki, T., Ogawa, T., Iijima, H., and Yamashina, I., A monoclonal antibody that recognizes a cluster of a disaccharide, NeuAca2–6GalNAc, in mucin-type glycoproteinsJ.Biol.Chem. 2638724 (1988).

    PubMed  CAS  Google Scholar 

  55. Tettamanti, G., and Pigman, W., Purification and characterization of bovine and ovine submaxillary mucinsArch.Biochem.Biophys. 12441 (1968).

    Article  PubMed  CAS  Google Scholar 

  56. Ogata, S., Koganty, R., Reddish, M., Longenecker, B. M., Chen, A., Perez, C., and Itzkowitz, S. H., Different modes of sialyl-Tn expression during malignant transformation of human colonic carcinomaGlycoconj.J.15, 29 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. Ogata, S., Ho, I., Chen, A., Dubois, D., Maklansky, J., Singhal, A. K., Hakomori, S., and Itzkowitz, S. H., Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosaCancer Res.55, 1869 (1995).

    PubMed  CAS  Google Scholar 

  58. Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S., and Kim, Y. S., Sialosyl-Tn: A novel mucin antigen associated with prognosis in colorectal cancer patientsCancer 661960 (1990).

    Article  PubMed  CAS  Google Scholar 

  59. Kobayashi, H., Terao, T., and Kawashima, Y., Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovariancancer J.Clin.Oncol. 1095 (1992).

    PubMed  CAS  Google Scholar 

  60. Giuffre, G., Vitarelli, E., Tuccari, G., and Barresi, G., Immunohistochemical studyof Tn, sialosyl-Tn and T antigens in human meningiomasEur.J.Histochem. 42197 (1998).

    PubMed  CAS  Google Scholar 

  61. Terashima, S., Takano, Y., Ohori, T., Kanno, T., Kimura, T., Motoki, R., and Kawaguchi, T., Sialyl-Tn antigen as a useful predictor of poor prognosis in patients with advanced stomach cancerSurg.Today 28682 (1998).

    Article  PubMed  CAS  Google Scholar 

  62. Karlen, P., Young, E., Brostrom, O., Lofberg, R., Tribukait, B., Ost, K., Bodian, C., and Itzkowitz, S. H., Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: Relation to dysplasia and DNA aneuploidyGastroenterology 1151395 (1998).

    Article  PubMed  Google Scholar 

  63. Jensen, P., Clausen, O. P., and Bryne, M., Differences in sialyl-Tn antigen expression between keratoacanthomas and cutaneous squamous cell carcinomasJ.Cutan.Pathol. 26183 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. Sato, T., Nishimura, G., Nonomura, A., Miwa, K., and Miyazaki, I., Serological studies on CEA, CA19–9, STn, and SLX in colorectal cancerHepatogastroenterology 46914 (1999).

    PubMed  CAS  Google Scholar 

  65. Lundin, M., Nordling, S., Roberts, P. J., Lundin, J., Carpelan-Holmstrom, M., von Boguslawsky, K., and Haglund, C., Sialyl Tn is a frequently expressed antigen in colorectal cancer: No correlation with patient prognosisOncology57, 70 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. Ikehara, Y., Kojima, N., Kurosawa, N., Kudo, T., Kono, M., Nishihara, S., Issiki, S., Morozumi, K., Itzkowitz, S., Tsuda, T., Nishimura, S., Tsuji, S., and Narimatsu, H., Cloning and expression of a human gene encoding an N-acetylgalactosamine-a2,6-sialyltransferase (ST6Ga1NAc I): A candidate for synthesis of cancer-associated sialyl-Tn antigensGlycobiology 91213 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. Lloyd, K. O., Kabat, E. A., Layug, E. J., and Gruezo, F., Immunochemical studies on blood groups: XXXIV. Structures of some oligosaccharides produced by alkaline degradation of blood group A, B, and H substancesBiochemistry 51489 (1966).

    Article  PubMed  CAS  Google Scholar 

  68. Abe, K., McKibbin, J. M., and Hakomori, S., The monoclonal antibody directed to difucosylated type 2 chain (Fucal-2Galß1→4[Fucal-→3]GleNAc; Y determinant)J.Biol.Chem. 25811793 (1983).

    PubMed  CAS  Google Scholar 

  69. Brown, A., Feizi, T., Gooi, H. C., Embleton, M. J., Picard, J. K., and Baldwin, R. W., A monoclonal antibody against human colonic adenoma recognizes difucosylated type 2 blood group chainsBiosci.Reports3, 163 (1983).

    Article  CAS  Google Scholar 

  70. Lloyd, K. O., Larson, G., Strömberg, N., Thurin, J., and Karlsson, K.-A., Mouse monoclonal antibody F-3 recognizes the difucosyl Type 2 blood group structureImmunogenetics 17537 (1983).

    Article  PubMed  CAS  Google Scholar 

  71. Pastan, I., Lovelace, E. T., Gallo, M. G., Rutherford, A. V., MagnaniJ.L., and Willingham, M. C., Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomasCancer Res. 513781 (1991).

    PubMed  CAS  Google Scholar 

  72. Scherf, U., Benhar, I., Webber, K. O., Pastan, I., and Brinkmann, U., Cytotoxic and antitumor activity of a recombinant tumor necrosis factor-B1(Fv) fusion protein on Ley antigen-expressing human cancer cellsClin.Cancer.Res. 21523 (1996).

    PubMed  CAS  Google Scholar 

  73. Bera, T. K., and Pastan, I., Comparison of recombinant immunotoxins against LeY antigen expressing tumor cells: Influence of affinity, size, and stabilityBioconjug.Chem. 9736 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. Kaizu, T., Levery, S. B., Nudelman, E. D., Stenkamp, R. E., and Hakomori, S., Novel fucolipids of human adenocarcinoma: Monoclonal antibody specific for tifucosyl Ley (III3FucV3FucVI2FucnLc6), and a possible three-dimensional epitope structure, J.Biol. Chem.26111254 (1986).

    CAS  Google Scholar 

  75. Deshpande, P. P., and Danishefsky, S. J., Total synthesis of the potential anticancer vaccine KH-1 adenocarcinoma antigenNature 387164 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. Miyake, M., and Hakomori, S., A specific cell surface glycoconjugate controlling cell motility: Evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasisBiochemistry 303328 (1991).

    Article  PubMed  CAS  Google Scholar 

  77. Miyake, M., Taki, T., Hitomi, S., and Hakomori, S., Correlation of expression of H/Ley/Leb antigens with survival in patients with carcinoma of the lungN.Eng1.J.Med. 32714 (1992).

    Article  CAS  Google Scholar 

  78. Goldstein, I. J., and Hayes, C. E., The lectins: Carbohydrate-binding proteins of plants and animalsAdv.Carbohydr.Chem.Biochem.35, 127 (1978).

    Article  PubMed  CAS  Google Scholar 

  79. Shirahama, T., Ikoma, M., Muramatsu, T., Kayajima, T., Ohi, Y., Tsushima, T., Akebi, N., Ohmori, H., Hirao, Y., and Okajima, E., The binding site for fucose-binding proteinsof Lotus tetragonolobusis a prognostic marker for transitional cell carcinoma of the human urinary bladderCancer 72 1329 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. Dische, Z., Fucose and sialic acid in glycoproteins of the mucus of the digestive tractFed.Proc. 19904 (1960).

    PubMed  CAS  Google Scholar 

  81. Koprowski, H., Herlyn, M., Steplewski, Z., and Sears, H. F., Specific antigen in serum of patients with colon carcinomaScience 21253 (1981).

    Article  PubMed  CAS  Google Scholar 

  82. Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V., A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose IIJ.Biol.Chem. 25714365 (1982).

    PubMed  CAS  Google Scholar 

  83. Hansson, G. C., and Zopf, D., Biosynthesis of the cancer-associated sialyl-Lea antigenIBiol.Chem. 2609388 (1985).

    CAS  Google Scholar 

  84. MagnaniJ.L., Steplewski, Z., Koprowski, H., and Ginsburg, V., Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as mucinCancer Res. 435489 (1983).

    PubMed  CAS  Google Scholar 

  85. Kannagi, R., Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancerGlycoconj.J. 14577 (1997).

    Article  PubMed  CAS  Google Scholar 

  86. Fukushi, Y., Nudelman, E. D., Levery, S. B., Rauvala, H., and Hakomori, S., Novel fucolipids accumulating in human cancer: III. A hybridoma antibody (FH6) defining a human cancer-associated difucoganglioside (VI3NeuAcV3HI3Fuc2nLc6)J.Biol.Chem. 25910511 (1984).

    PubMed  CAS  Google Scholar 

  87. Fukushima, K., Hirota, M., Terasaki, P. I., Wakisaka, A., Togashi, H., Chia, D., Suyama, N., Fukushi, Y., Nudelman, E. D., and Hakomori, S., Characterization of sialosylated Lewisx as a new tumor-associated antigenCancer Res. 445279 (1984).

    PubMed  CAS  Google Scholar 

  88. Symington, F. W., Hedges, D. L., and Hakomori, S., Glycolipid antigens of human polymorphonuclear neutrophils and the inducible HL-60 myeloid leukemia lineJ.Immunol. 1342498 (1985).

    PubMed  CAS  Google Scholar 

  89. Nakamori, S., Kameyama, M., Imaoka, S., Furukawa, H., Ishikawa, O., Sasaki, Y., Kabuto, T., Iwanaga, T., Matsushita, Y., and Irimura, T., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinicopathological and immunohistochemical studyCancer Res. 533632 (1993).

    PubMed  CAS  Google Scholar 

  90. Nakagoe, T., Fukushima, K., Hirota, M., Kusano, H., Ayabe, H., Tomita, M., and Kamihira, S., Immunohistochemical expression of sialyl Lex antigen in relation to survival of patients with colorectal carcinomaCancer 722323 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNACell 63475 (1990).

    Article  PubMed  CAS  Google Scholar 

  92. Phillips, M. L., Nudelman, E. D., Gaeta, F. C. A., Perez, M., Singhal, A. K., Hakomori, S., and PaulsonJ.C., ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-LexScience 2501130 (1990).

    Article  PubMed  CAS  Google Scholar 

  93. Hakomori, S., Possible new directions in cancer therapy based on aberrant expression of glycosphingolipids: Anti-adhesion and ortho-signaling therapyCancer Cells3, 461 (1991).

    PubMed  CAS  Google Scholar 

  94. Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L., A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, 1.Biol.Chem. 26614869 (1991).

    CAS  Google Scholar 

  95. Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K., Yago, A., Zenita, K., Hasegawa, A., and Kannagi, R., Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis ABiochem.Biophys.Res.Commun. 179713 (1991).

    Article  PubMed  CAS  Google Scholar 

  96. Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and Kannagi, R., Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endotheliumCancer Res.53, 354 (1993).

    PubMed  CAS  Google Scholar 

  97. Hakomori, S., Novel endothelial cell activation factor(s) released from activated platelets which induce E-selectin expression and tumor cell adhesion to endothelial cells: A preliminary noteBiochem. Biophys.Res.Commun. 2031605 (1994).

    Article  PubMed  CAS  Google Scholar 

  98. Khatib, A.-M., Kontogiannea, M., Fallavollita, L., Jamison, B., Meterissian, S., and Brodt, P., Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cellsCancer Res. 591356 (1999).

    PubMed  CAS  Google Scholar 

  99. Polley, M. J., Phillips, M. L., Wayner, E. A., Nudelman, E. D., Singhal, A. K., Hakomori, S., and Paulson, J. C., CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis xProc.Natl.Acad.Sci. USA 886224 (1991).

    Article  PubMed  CAS  Google Scholar 

  100. Varki, A., Selectin ligandsProc.Natl.Acad.Sci. USA91, 7390 (1994).

    Article  PubMed  CAS  Google Scholar 

  101. Lasky, L. A., Selectin-carbohydrate interactions and the initiation of the inflammatory responseAnnu.Rev.Biochem. 64113 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. Stroud, M. R., Handa, K., Salyan, M. E. K., Ito, K., Levery, S. B., Hakomori, S., Reinhold, B. B., and Reinhold, V. N., Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 1. Separation of E-selectin binding from nonbinding gangliosides, and absence of sialosyl-Lex having tetraosyl to octaosyl coreBiochemistry35, 758 (1996).

    Article  PubMed  CAS  Google Scholar 

  103. Stroud, M. R., Handa, K., Salyan, M. E. K., Ito, K., Levery, S. B., Hakomori, S., Reinhold, B. B., and Reinhold, V. N., Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 2. Characterization of E-selectin binding fractions, and structural requirements for physiological binding to E-selectinBiochemistry35, 770 (1996).

    Article  PubMed  CAS  Google Scholar 

  104. Handa, K., Stroud, M. R., and Hakomori, S., Sialosyl-fucosyl poly-LacNAc without the sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-dependent adhesion: Studies under static and dynamic flow conditionsBiochemistry 3612412 (1997).

    Article  PubMed  CAS  Google Scholar 

  105. Handa, K., Withers, D. A., and Hakomori, S., The al->3 fucosylation at the penultimate GlcNAc catalyzed by fucosyltransferase VII is blocked by internally fucosylated residue in sialosyl long-chain poly-LacNAc: Enzymatic basis for expression of physiological E-selectin epitopeBiochem.Biophys. Res.Commun. 243199 (1998).

    Article  PubMed  CAS  Google Scholar 

  106. Sako, D., Chang, X.-J., Barone, K. M., Vachino, G., White, H. M., Shaw, G., Veldman, G.M., Bean, K. M., Ahern, T. J., Furie, B., Cumming, D. A., and Larsen, G. R., Expression cloning of a functional glycoprotein ligand for P-selectinCell 751179 (1993).

    Article  PubMed  CAS  Google Scholar 

  107. Handa, K., White, T., Ito, K., Fang, H., Wang, S., and Hakomori, S., P-selectin-dependent adhesion of human cancer cells: Requirement for co-expression of a “PSGL-1-like” core protein and the glycosylation process for sialosyl-Lex or sialosyl-LeaInt.lOncol.6, 773 (1995).

    CAS  Google Scholar 

  108. Nudelman, E. D., Levery, S. B., Stroud, M. R., Salyan, M. E. K., Abe, K., and Hakomori, S., A novel tumor-associated, developmentally regulated glycolipid antigen defined by monoclonal antibody ACFH-18J.Biol.Chem. 26313942 (1988).

    PubMed  CAS  Google Scholar 

  109. Jämefelt, J., Rush, J., Li, Y.-T., and Laine, R. A., Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1-→4)-2-deoxy-2-acetamido-glucosyl(1→3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stromaJ.Biol.Chem. 2538006 (1978).

    Google Scholar 

  110. Levery, S. B., Nudelman, E. D., Salyan, M. E. K., and Hakomori, S., Novel tri-and tetrasialylpoly-N-acetyllactosaminyl gangliosides of human placenta: Structure determination of pentadeca-and eicosaglycosylceramides by methylation analysis, fast atom bombardment mass spectrometry, and 1H-NMR spectroscopyBiochemistry 287772 (1989).

    Article  PubMed  CAS  Google Scholar 

  111. Nudelman, E. D., Mandel, U., Levery, S. B., Kaizu, T., and Hakomori, S., A series of disialogangliosides with binary 2–3 sialosyllactosamine structure, defined by monoclonal antibody NUH2, are oncodevelopmentally regulated antigensJ.Biol.Chem. 26418719 (1989).

    PubMed  CAS  Google Scholar 

  112. Kannagi, R., Levery, S. B., and Hakomori, S., Lea-active heptaglycosylceramide, a hybrid of type 1 and type 2 chain, and the pattern of glycolipids with Lea, Leb, X (Lex) and Y (Ley) determinants in human blood cell membranes (ghosts): Evidence that type 2 chain can elongate repetitively but type 1 chaincannot J.Biol.Chem. 2606410 (1985).

    PubMed  Google Scholar 

  113. Mártensson, S., Due, C., Páhlsson, P., Nilsson, B., Eriksson, H., Zopf, D., Olsson, L., and Lundblad, A., A carbohydrate epitope associated with human squamous lung cancerCancer Res. 482125 (1988).

    PubMed  Google Scholar 

  114. Stroud, M. R., Levery, S. B., Mártensson, S., Salyan, M. E. K., Clausen, H., and Hakomori, S., Human tumor-associated Lea-Lex hybrid carbohydrate antigen IV3(Gal13l->3[Fuca1-->4]GlcNAc)III3FucnLc4 defined by monoclonal antibody 43–9F: Enzymatic synthesis, structural characterization, and comparative reactivity with various antibodiesBiochemistry33, 10672 (1994).

    Article  PubMed  CAS  Google Scholar 

  115. Watanabe, M., Hirohashi, S., Shimosato, Y., Ino, Y., Yamada, T., Teshima, S., Sekine, T., and Abe, O., Carbohydrate antigen defined by a monoclonal antibody raised against a gastric cancer xenograftJpn.J.Cancer Res.(Gann) 7643 (1985).

    CAS  Google Scholar 

  116. Watanabe, M., Ohishi, T., Kuzuoka, M., Nudelman, E. D., Stroud, M. R., Kubota, T., Kodaira, S., Abe, O., Hirohashi, S., Shimosato, Y., and Hakomori, S.In vitroandin vivoantitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Lea (Lea/Lea) epitopeCancer Res. 512199 (1991).

    PubMed  CAS  Google Scholar 

  117. Stroud, M. R., Levery, S. B., Nudelman, E. D., Salyan, M. E. K., Towell, J. A., Roberts, C. E., Watanabe, M., and Hakomori, S., Extended type 1 chain glycosphingolipids: Dimeric Lea (III4V4Fuc2Lc6) as human tumor-associated antigenJ.Biol.Chem. 2668439 (1991).

    PubMed  CAS  Google Scholar 

  118. Stroud, M. R., Levery, S. B., Salyan, M. E. K., Roberts, C. E., and Hakomori, S., Extended type-1 chain glycosphingolipid antigens: Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6)Eur.J.Biochem. 203577 (1992).

    Article  PubMed  CAS  Google Scholar 

  119. Ito, H., Tashiro, K., Stroud, M. R., Orntoft, T. F., Meldgaard, P., Singhal, A. K., and Hakomori, S., Specificity and immunobiological properties of monoclonal antibody IMH2, established after immunization with Leb/Lea glycosphingolipid, a novel extended type 1 chain antigenCancer Res. 523739 (1992).

    PubMed  CAS  Google Scholar 

  120. Watanabe, K., Powell, M. E., and Hakomori, S., Isolation and characterization of gangliosides with a new sialosyl linkage and core structure: Gangliosides of human erythrocyte membranes IIJ.Biol. Chem. 2548223 (1979).

    PubMed  CAS  Google Scholar 

  121. Hakomori, S., Patterson, C. M., Nudelman, E. D., and Sekiguchi, K., A monoclonal antibody directed to N-acetylneuraminosyl a2→6galactosyl residue in gangliosides and glycoproteinsJ.Biol.Chem. 25811819 (1983).

    PubMed  CAS  Google Scholar 

  122. Kannagi, R., Levery, S. B., Ishigami, F., Hakomori, S., Shevinsky, L. H., Knowles, B. B., and Solter, D., New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3J.Biol.Chem. 2588934 (1983).

    PubMed  CAS  Google Scholar 

  123. Mènard, S., Tagliabue, E., Canevari, S., Fossati, G., and Colnaghi, M. I., Generation of monoclonal antibodies reacting with normal and cancer cells of human breastCancer Res.43, 1295 (1983).

    PubMed  Google Scholar 

  124. Bremer, E. G., Levery, S. B., Sonnino, S., Ghidoni, R., Canevari, S., Kannagi, R., and Hakomori, S., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBrl expressed in normal and neoplastic epithelial cells of human mammary glandJ.Biol.Chem. 25914773 (1984).

    PubMed  CAS  Google Scholar 

  125. Perrone, F., Ménard, S., Canevari, S., Calabrese, M., Boracchi, P., Bufalino, R., Testori, S., Baldini, M., and Colnaghi, M. I., Prognostic significance of the CaMBr1 antigen on breast carcinoma: Relevance of the type of recognised glycoconjugateEur.J.Cancer 29A2113 (1993).

    Article  PubMed  CAS  Google Scholar 

  126. Mariani-Costantini, R., Colnaghi, M. I., Leoni, F., Mènard, S., Cerasoli, S., and Rilke, F., Immunohistochemical reactivity of a monoclonal antibody prepared against human breast carcinomaVirchows Arch.A Pathol.Anat.Histopathol. 402389 (1984).

    Article  PubMed  CAS  Google Scholar 

  127. Zhang, S., Zhang, H. S., Reuter, V. E., Slovin, S. F., Scher, H. I., and Livingston, P. O., Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancersClin.Cancer Res. 4295 (1998).

    PubMed  CAS  Google Scholar 

  128. Saito, S., Levery, S. B., Salyan, M. E. K., Goldberg, R. I., and Hakomori, S., Common tetrasaccharide epitope NeuAca2→3Ga1ß1→3(NeuAca2→6)Ga1NAc, presented by different carrier glycosylceramides or 0-linked peptides, is recognized by different antibodies and ligands having distinct specificitiesJ.Biol.Chem. 2695644 (1994).

    PubMed  CAS  Google Scholar 

  129. Satoh, M., Handa, K., Saito, S., Tokuyama, S., Ito, A., Miyao, N., Orikasa, S., and Hakomori, S., Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potentialCancer Res. 561932 (1996).

    PubMed  CAS  Google Scholar 

  130. Saito, S., Orikasa, S., Satoh, M., Ohyama, C., Ito, A., and Takahashi, T., Expression of globo-series gangliosides in human renal cell carcinomaJpn.J. Cancer Res. (Gann) 88652 (1997).

    Article  CAS  Google Scholar 

  131. Nilsson, O., Mansson, J.-E., Brezicka, T., Holmgren, J., Lindholm, L., Sorenson, S., Yngvason, F., and Svennerholm, L., Fucosyl GM1 — a ganglioside associated with small cell lung carcinomasGlycoconj. J. 143 (1984).

    Article  CAS  Google Scholar 

  132. Nilsson, O., Brezicka, F. T., Holmgren, J., Sorenson, S., Svennerholm, L., Yngvason, F., and Lindholm, L., Detection of a ganglioside antigen associated with small cell lung carcinomas using monoclonal antibodies directed against fucosyl-GMICancer Res. 461403 (1986).

    PubMed  CAS  Google Scholar 

  133. Vangsted, A. J., Clausen, H., Kjeldsen, T. B., White, T., Sweeney, B., Hakomori, S., Drivsholm, L., and Zeuthen, J., Immunochemical detection of a small cell lung cancer-associated ganglioside (FucGM1) in serumCancer Res. 512879 (1991).

    PubMed  CAS  Google Scholar 

  134. Portoukalian, J., Zwingelstein, G., and Dore, J., Lipid composition of human malignant melanoma tumors at various levels of malignant growthEur.J.Biochem. 9419 (1979).

    Article  PubMed  CAS  Google Scholar 

  135. Yeh, M.-Y., Hellström, I., Abe, K., Hakomori, S., and Hellström, K.-E., A cell-surface antigen which is present in the ganglioside fraction and shared by human melanomasIntl Cancer 29269 (1982).

    Article  CAS  Google Scholar 

  136. Nudelman, E. D., Hakomori, S., Kannagi, R., Levery, S. B., Yeh, M.-Y., Hellström, K.-E., and Hellström, I., Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2J.Biol.Chem. 25712752 (1982).

    PubMed  CAS  Google Scholar 

  137. Pukel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J., GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibodylExp.Med. 1551133 (1982).

    CAS  Google Scholar 

  138. Houghton, A. N., Mintzer, D., Cordon-Cardo, C., Welt, S. W., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M. R., Oettgen, H. F., and Old, L. J., Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: A phase I trial in patients with malignant melanomaProc.Natl.Acad.Sci. USA 821242 (1985).

    Article  PubMed  CAS  Google Scholar 

  139. Trie, R. F., Sze, L. L., and Saxton, R. E., Human antibody to OFA-1, a tumor antigen, producedin vitroby Epstein-Barr virus-transformed human 3-lymphoid cell linesProc.Natl.Acad.Sci. USA 79 5666 (1982).

    Article  Google Scholar 

  140. Tai, T., Paulson, J. C., Cahan, L. D., and Irie, R. F., Ganglioside GM2 as a human tumor antigen (OFA-I-1)Proc.Natl.Acad.Sci. USA 805392 (1983).

    Article  PubMed  CAS  Google Scholar 

  141. Cahan, L. D., Irie, R. F., Singh, R., Cassidenti, A., and Paulson, J. C., Identification of human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2Proc.Natl.Acad.Sci. USA 797629 (1982).

    Article  PubMed  CAS  Google Scholar 

  142. Watanabe, T., Pukel, C. S., Takeyama, H., Lloyd, K. O., Shiku, H, Li, L. T. C., Trabassos, L. R., Oettgen, H. F., and Old, L. J., Human melanoma antigen AH is an autoantigen ganglioside related toGD2 J.Exp.Med. 1561884 (1982).

    Article  PubMed  CAS  Google Scholar 

  143. Hirabayashi, Y., Hanaoka, A., Matsumoto, M., Matsubara, T., Tagawa, M., Wakabayashi, S., and Taniguchi, M., Syngeneic monoclonal antibody against melanoma antigen with interspecies cross-reactivity recognizes GM3, a prominent ganglioside of B16 melanomaJ.Biol.Chem. 26013328 (1985).

    PubMed  CAS  Google Scholar 

  144. Nores, G. A., Dohi, T., Taniguchi, M., and Hakomori, S., Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: Requirements for tumor-associated antigen and immunogenJ.Immunol. 1393171 (1987).

    PubMed  CAS  Google Scholar 

  145. Nakano, J., Muto, M., Shimizu, T., Hirota, T., Ichimiya, M., and Asagami, C., Ganglioside expression in melanomas from Japanese individuals: Unusual pattern in two patients with metastatic lesions of acral lentiginous melanomasPigment Cell Res., 10201 (1997).

    Article  PubMed  CAS  Google Scholar 

  146. Cheung, N.-K., Lazarus, H., Miraldi, F. D., Abramowsky, C. R., Kallick, S., Saarinen, U. M., Spitzer, T., Strandjord, S. E., Coccia, P. F., and Berger, N. A., Ganglioside GD2 specific monoclonal antibody 3F8: A phase I study in patients with neuroblastoma and malignant melanomaJ.Clin.Oncol., 51430 (1987).

    PubMed  CAS  Google Scholar 

  147. Saleh, M. N., Khazaeli, M. B., Wheeler, R. H., Dropcho, E., Liu, T., Urist, M., Miller, D. M., Lawson, S., Dixon, P., Russell, C. H., and LoBuglio, A. F., Phase I trial of the murine monoclonal anti-GD2 antibody 14G9a in metastatic melanomaCancer Res., 524342 (1992).

    PubMed  CAS  Google Scholar 

  148. Zhang, H., Zhang, S., Cheung, N. K., Ragupathi, G., and Livingston, P. 0., Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastasesCancer Res., 582844 (1998).

    PubMed  CAS  Google Scholar 

  149. Young, W. W. J., and Hakomori, S., Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variantsin vivo, Science, 211487 (1981).

    CAS  Google Scholar 

  150. Jones, P. C., Sze, L. L., Liu, P. Y., Morton, D. L., and Irie, R. F., Prolonged survival for melanoma patients with elevated IgM antibody to oncofetal antigenJ.Natl.Cancer Inst., 66249 (1981).

    PubMed  CAS  Google Scholar 

  151. Livingston, P. O., Wong, G. Y., Adluri, S., Tao, Y., Padavan, M., Parente, R., Hanlon, C., Calves, M. J., Helling, F., and Ritter, G.Improved survival in stage III melanoma patients with GM2 antibodies: A randomized trial of adjuvant vaccination with GM2 gangliosideJ.Clin.Oncol., 121036 (1994).

    PubMed  CAS  Google Scholar 

  152. Livingston, P. O., Approaches to augmenting the immunogenicity of melanoma gangliosides: From whole melanoma cells to ganglioside-KLH conjugate vaccinesImmunol.Rev., 145147 (1995).

    Article  PubMed  CAS  Google Scholar 

  153. Livingston, P. 0., Carbohydrate vaccines that induce antibodies against cancer. 1. RationaleCancer Immunol.Immunother., 451 (1997).

    Article  PubMed  CAS  Google Scholar 

  154. Young, W. W. J., MacDonald, E. M. S., Nowinski, R. C., and Hakomori, S., Production of monoclonal antibodies specific for distinct portions of the glycolipid asialo GM2 (gangliotriosylceramide)J.Exp. Med., 1501008 (1979).

    Article  PubMed  CAS  Google Scholar 

  155. Livingston, P. O., Natoli, E. J., Calves, M. J., Stockert, E., Oettgen, H. F., and Old, L. J., Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patientsProc.Natl.Acad.Sci. USA, 842911 (1987).

    Article  PubMed  CAS  Google Scholar 

  156. Kitamura, K., Livingston, P. O., Fortunato, S. R., Stockert, E., Helling, F., Ritter, G., Oettgen, H. F., and Old, L. J., Serological response patterns of melanoma patients immunized with a GM2 ganglioside conjugate vaccineProc.Natl.Acad.Sci. USA, 922805 (1995).

    Article  PubMed  CAS  Google Scholar 

  157. Helling, F., Shang, A., Calves, M. J., Zhang, S., Ren, S., Yu, R. K., Oettgen, H. F., and Livingston, P. O., GD3 vaccines for melanoma: Superior immunogenicity of keyhole limpet hemocyanin conjugate vaccinesCancer Res., 54197 (1994).

    PubMed  CAS  Google Scholar 

  158. Schulz, G., Cheresh, D. A., Varki, N. M., Yu, A., Staffileno, L. K., and Reisfeld, R. A., Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patientsCancer Res., 445914 (1984).

    PubMed  CAS  Google Scholar 

  159. Pancook, J. D., Becker, J. C., Gillies, S. D., and Reisfeld, R. A., Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2Cancer Immunol.Immunother., 4288 (1996).

    Article  PubMed  CAS  Google Scholar 

  160. Becker, J. C., Varki, N., Gillies, S. D., Furukawa, K., and Reisfeld, R. A., An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune responseProc.Natl. Acad.Sci.USA, 937826 (1996).

    Article  PubMed  CAS  Google Scholar 

  161. Clausen, H., and Hakomori, S., ABH and related histo-blood group antigens: Immunochemical differences in carrier isotypes and their distributionVox Sang., 561 (1989).

    Article  PubMed  CAS  Google Scholar 

  162. Slovin, S. F., Ragupathi, G., Adluri, S., Ungers, G., Terry, K., Kim, S., Spassova, M., Bornmann, W. G., Fazzari, M., Dantis, L., Olkiewicz, K., Lloyd, K. O., Livingston, P. 0., Danishefsky, S. J., and Scher, H. I., Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo H hexasaccharide conjugate in manProc.Natl.Acad.Sci. USA, 965710 (1999).

    Article  PubMed  CAS  Google Scholar 

  163. Toyokuni, T., Dean, B., Cai, S., Boivin, D., Hakomori, S., and Singhal, A. K., Synthetic vaccines: Synthesis of a dimeric Tn antigen-lipopeptide conjugate that elicits immune responses against Tn-expressing glycoproteinsJ.Am.Chem.Soc., 116395 (1994).

    Article  CAS  Google Scholar 

  164. Toyokuni, T., Hakomori, S., and Singhal, A. K., Synthetic carbohydrate vaccines: Synthesis and immunogenicity of Tn antigen conjugatesBioorg.Med.Chem., 21119 (1994).

    Article  PubMed  CAS  Google Scholar 

  165. Lo-Man, R., Bay, S., Vichier-Guerre, S., Deriaud, E., Cantacuzene, D., and Leclerc, C., A fully synthetic immunogen carrying a carcinoma-associated carbohydrate for active specific immunotherapyCancer Res., 591520 (1999).

    PubMed  Google Scholar 

  166. Singhal, A. K., Fohn, M., and Hakomori, S., Induction of Tn (a-N-acetylgalactosamine-O-serine/ threonine) antigen-mediated cellular immune response for active immunotherapy in miceCancer Res., 511406 (1991).

    PubMed  CAS  Google Scholar 

  167. MacLean, G. D., Reddish, M. A., Koganty, R. R., and Longenecker, B. M., Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccineJ.Immunother., 1959 (1996).

    Article  CAS  Google Scholar 

  168. MacLean, G. D., Miles, D. W., Rubens, R. D., Reddish, M. A., and Longenecker, B. M., Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamideJ.Immunother., 19309 (1996).

    Article  CAS  Google Scholar 

  169. Ragupathi, G., Koganty, R. R., Qiu, D., Lloyd, K. O., and Livingston, P. O., A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: Synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane- 1 -carboxyl hydrazide (MMCCH) linker armGlycoconj.J., 15217 (1998).

    Article  PubMed  CAS  Google Scholar 

  170. McCaffery, M., Yao, T.-J., Williams, L., Livingston, P. O., Houghton, A. N., and Chapman, P. B., Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: Enhanced immunogenicity when combined with adjuvantClin.Cancer Res., 2679 (1996).

    PubMed  CAS  Google Scholar 

  171. Yao, T.-J., Meyers, M., Livingston, P. O., Houghton, A. N., and Chapman, P. B., Immunization of melanoma patients with BEC2-keyhole limpet hemocyanin plus BCG intradermally followed by intravenous booster immunizations with BEC2 to induce anti-GD3 ganglioside antibodiesClin.CancerRes., 577 (1999).

    CAS  Google Scholar 

  172. Yan, X., Evans, S. V., Kaminki, M. J., Gillies, S.D., Reisfeld, R. A., Houghton, A. N., and Chapman, P. B., Characterization of an Ig VH idiotope that results in specific homophilic binding and increased avidity for antigenJ.Immunol., 1571582 (1996).

    PubMed  CAS  Google Scholar 

  173. Scott, J. K., and Smith, G. P., Searching for peptide ligands with an epitope libraryScience, 249386 (1990).

    Article  PubMed  CAS  Google Scholar 

  174. Devlin, J. J., Panganiban, L. C., and Devlin, P. E., Random peptide libraries: A source of specific protein binding moleculesScience, 249404 (1990).

    Article  PubMed  CAS  Google Scholar 

  175. Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J., Peptides on phage: A vast library of peptides for identifying ligandsProc.Natl.Acad.Sci. USA, 876378 (1990).

    Article  PubMed  CAS  Google Scholar 

  176. Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J., A family of concanavalin A-binding peptides from a hexapeptide epitope libraryProc.Natl.Acad.Sci.USA, 895398 (1992).

    Article  PubMed  CAS  Google Scholar 

  177. Phalipon, A., Folgori, A., Arondel, J., Sgaramella, G., Fortugno, P., Cortese, R., Sansonetti, P. J., and Felici, F., Induction of anti-carbohydrate antibodies by phage library-selected peptide mimicsEur.J. Immunol., 272620 (1997).

    Article  PubMed  CAS  Google Scholar 

  178. Pincus, S. H., Smith, M. J., Jennings, H. J., Burritt, J. B., and Glee, P. M., Peptides that mimic the group B streptococcal type III capsular polysaccharide antigenJ.Immunol., 160293 (1998).

    PubMed  CAS  Google Scholar 

  179. Lou, Q., and Pastan, I., A Lewisy epitope mimicking peptide induces anti-Lewisy immune responses in rabbits andmice,1 Peptide Res.53, 252 (1999).

    Article  CAS  Google Scholar 

  180. Taki, T., Ishikawa, D., Hamasaki, H., and Handa, S., Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on 13-galactosidase activityFEBSLett., 418219 (1997).

    Article  CAS  Google Scholar 

  181. Ishikawa, D., Kikkawa, H., Ogino, K., Hirabayashi, Y., Oku, N., and Taki, T., GD1a-replica peptides functionally mimic GD1a, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasisFEBSLett., 44120 (1998).

    Article  CAS  Google Scholar 

  182. Kieber-Emmons, T., Luo, P., Qiu, J., Chang, T. Y. O. I., Blaszczyk-Thurin, M., and Steplewski, Z., Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responsesNature Biotechnol., 17660 (1999).

    Article  CAS  Google Scholar 

  183. Qiu, J., Luo, P., Wasmund, K., Steplewski, Z., and Kieber-Emmons, T., Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccinesHybridoma, 18103 (1999).

    Article  PubMed  CAS  Google Scholar 

  184. Taki, T., Ishikawa, D., Ogura, M., Nakajima, M., and Handa, S., Ganglioside GD1a functions in the adhesion of metastatic tumor cells to endothelial cells of the target tissueCancer Res., 571882 (1997).

    PubMed  CAS  Google Scholar 

  185. Kojima, N., and Hakomori, S., Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J.Biol.Chem.26617552 (1991).

    PubMed  CAS  Google Scholar 

  186. Kojima, N., Shiota, M., Sadahira, Y., Handa, K., and Hakomori, S., Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells1 Biol. Chem., 26717264 (1992).

    CAS  Google Scholar 

  187. Otsuji, E., Park, Y. S., Tashiro, K., Kojima, N., Toyokuni, T., and Hakomori, S., Inhibition of B16 melanoma metastasis by administration of GM3- or Gg3-liposomes: Blocking adhesion of melanoma cells to endothelial cells (anti-adhesion therapy) via inhibition of GM3-Gg3Cer or GM3-LacCer interactionInt.lOncol., 6319 (1995).

    CAS  Google Scholar 

  188. Hakomori, S., Role of gangliosides in tumor progression, inBiological function of gangliosides (Progress in Brain Research, Vol. 101)Svennerholm, L., Asbury, A. K., Reisfeld, R. A., Sandhoff, K., Suzuki, K., Tettamanti, G., and Toffano, G., Eds., Elsevier Science BV, Amsterdam, pp. 241 (1994).

    Google Scholar 

  189. Herrlich, P., Pals, S., and Ponta, H., CD44 in colon cancerEur.J.Cancer, 31A1110 (1995).

    Article  PubMed  CAS  Google Scholar 

  190. Yamamura, S., Handa, K., and Hakomori, S., A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: A preliminary noteBiochem. Biophys.Res.Commun., 236218 (1997).

    Article  PubMed  CAS  Google Scholar 

  191. Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., and Hakomori, S., GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16cells, J.Biol.Chem., 2739130 (1998).

    Article  CAS  Google Scholar 

  192. Yu, S., Withers, D. A., Yamamura, S., Handa, K., and Hakomori, S., Cell recognition and subsequent signal transduction through glycosphingolipid-glycosphingolipid interaction [Abstract]Glycoconj.l, 14 (Suppl)S53 (1997).

    Google Scholar 

  193. Yu, S., Withers, D. A., and Hakomori, S., Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREBJ.Biol.Chem., 2732517 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hakomori, Si. (2001). Tumor-Associated Carbohydrate Antigens Defining Tumor Malignancy: Basis for Development of Anti-Cancer Vaccines. In: Wu, A.M. (eds) The Molecular Immunology of Complex Carbohydrates —2. Advances in Experimental Medicine and Biology, vol 491. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1267-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1267-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5469-7

  • Online ISBN: 978-1-4615-1267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics