Glycosyl Phosphatidylinositol-Linked Glycoconjugates:Structure, Biosynthesis and function

  • Kuo-yuan Hwa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)

Abstract

The purpose of this review is to summarize the most recent advances on GPI research. tructural studies on GPI-linked glycoconjugates indicate that there are significant ariations in different organisms, although there is a conserved core structure. Furthermore, tructural studies suggest that in different cell types, there is an army oflycosyltransferases dedicated to the synthesis of GPI-linked glycoconjugates. Bio-hemical studies on the synthesis of these GPI-linked glycoconjugates suggest that not only many different enzymes are involved but also that enzymes from different cell types, nvolving in the conserved core structure can have different substrate specificity. Genetic loning of the yeast genes involved in synthesizing the core structure suggests that many of hese enzymes also have human homologues. However, paroxysmal nocturnal emogobinuria (PNH) is the only known human disease associated with the synthesis of GPI-linked glycoconjugates. Functional studies suggest that GPI-anchor can act as a signal or protein sorting and localization. Furthermore, GPI-linked receptors play an important ole in T-cell activation.

Keywords

Folate Integrin Sorting Plasminogen Transferrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Takeda, J. and Kinoshita, T. (1995) GPI-anchor biosynthesis. Trends Biochem Sci., 20: 367–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Menon, A. K., Baumann, N. A., van’t Hof, W., and Vidugiriene, J. (1997) Glycosylphosphatidylinositols: biosynthesis and intracellular transport. Biochem Soc Trans., 25: 861–5.PubMedGoogle Scholar
  3. 3.
    Brodbeck, U. (1998) Signalling properties of glycosylphosphatidylinositols and their regulated release from membranes in the turnover of glycosylphosphatidylinositol-anchored proteins. Biol Chem., 379: 1041–4.PubMedGoogle Scholar
  4. 4.
    Ferguson, M. A. (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci., 112: 2799–809.PubMedGoogle Scholar
  5. 5.
    Horejsi, V., Drbal, K., Cebecauer, M., Cerny, J., Brdicka, T., Angelisova, P., and Stockinger, H. (1999) GPI-microdomains: a role in signalling via immunoreceptors. Immunol Today., 20: 35661CrossRefGoogle Scholar
  6. 6.
    Tiede, A., Bastisch, I., Schubert, J., Orlean, P., and Schmidt, R. E. (1999) Bio-synthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem., 380: 503–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Morita, Y., Acosta-Serrano, A., and Englund, P. T. (in press) The biosynthesis of GPI anchors, (Ernst, B., Sina, P. and Hart, G. eds), Weinheim, Wiley-VCH.Google Scholar
  8. 8.
    Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N., and Klis, F. M. (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology., 6: 337–45.Google Scholar
  9. 9.
    Mehlert, A., Zitzmann, N., Richardson, J. M., Treumann, A., and Ferguson, M. A. (1998) The glycosylation of the variant surface glycoproteins and procyclic acidic repetitive proteins of Trypanosoma brucei. Mol Biochem Parasitol., 91: 145–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferguson, M. A. (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci., 352: 1295–302.CrossRefPubMedGoogle Scholar
  11. 11.
    Ralton, J. E. and McConville, M. J. (1998) Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem., 273: 4245–57.CrossRefPubMedGoogle Scholar
  12. 12.
    Vidugiriene, J., Sharma, D. K., Smith, T. K., Baumann, N. A., and Menon, A. K. (1999) Segregation of glycosylphosphatidylinositol biosynthetic reactions in a subcompartment of the endoplasmic reticulum. J Biol Chem., 274: 15203–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Hilley, J. D., Zawadzki, J. L., McConville, M. J., Coombs, G. H., and Mottram, J. C. (2000) Leishmania mexicana Mutants Lacking Glycosylphosphatidylinositol (GPI):Protein Transamidase Provide Insights into the Biosynthesis and Functions of GPI-anchored Proteins. Mol Biol Cell., 11: 1183–1195.PubMedGoogle Scholar
  14. 14.
    Kinoshita, T., Ohishi, K., and Takeda, J. (1997) GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J Biochem (Tokyo)., 122: 251–7.CrossRefGoogle Scholar
  15. 15.
    Smith, T. K., Sharma, D. K., Crossman, A., Dix, A., Brimacombe, J. S., and Ferguson, M. A. (1997) Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J., 16: 6667–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Descoteaux, A. and Turco, S. J. (1999) Glycoconjugates in Leishmania infectivity. Biochim Biophys Acta., 1455: 341–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Ali, S., Hall, J., Hazlewood, G. P., Hirst, B. H., and Gilbert, H. J. (1996) A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J., 315: 857–62.PubMedGoogle Scholar
  18. 18.
    Lipardi, C., Nitsch, L., and Zurzolo, C. (2000) Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell., 11: 531–42.PubMedGoogle Scholar
  19. 19.
    Nosjean, O., Briolay, A. Roux, B. (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta., 1331: 153–86.Google Scholar
  20. 20.
    McGwire, G. B., Becker, R. P., and Skidgel, R. A. (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem., 274: 31632–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Benting, J. H., Rietveld, A. G., and Simons, K. (1999) N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol., 146: 313–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Alfalah, M., Jacob, R., Preuss, U., Zimmer, K. P., Naim, H., and Naim, H. Y. (1999) 0-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr Biol., 9: 59–36.Google Scholar
  23. 23.
    Seed, B. (1995) Initiation of signal transduction by receptor aggregation: role of nonreceptor tyrosine kinases. Semin Immunol., 7: 3–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Robinson, P. J. (1997) Signal transduction via GPI-anchored membrane proteins. Adv Exp Med Biol., 419: 365–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Ilangumaran, S., He, H. T. and Hoessli, D. C. (2000) Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. Immunol Today., 21: 2–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Petty, H. R. and Todd, R. F. D (1996) Integrins as promiscuous signal transduction devices. Immunol Today., 17: 209–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Porter, J. C. and Hogg, N. (1998) Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol., 8: 390–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith, T. K., Cottaz, S., Brimacombe, J. S., and Ferguson, M. A. (1996) Substrate specificity of the dolichol phosphate mannose: glucosaminyl phosphatidylinositol alphal-4- mannosyltransferase of the glycosylphosphatidylinositol biosynthetic pathway of African trypanosomes. J Biol Chem., 271: 6476–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Sharma, D. K., Smith, T. K., Crossman, A., Brimacombe, J. S., and Ferguson, M. A. (1997) Substrate specificity of the N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol membrane anchor biosynthesis in African trypanosomes and human cells. Biochem J., 328: 171–7.PubMedGoogle Scholar
  30. 30.
    Sharma, D. K., Smith, T. K., Weller, C. T., Crossman, A., Brimacombe, J. S., and Ferguson, M. A. (1999) Differences between the trypanosomal and human G1cNAc-PI de-N-acetylases of glycosylphosphatidylinositol membrane anchor biosynthesis. Glycobiology., 9: 415–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Smith, T. K., Sharma, D. K., Crossman, A., Brimacombe, J. S., and Ferguson, M. A. (1999) Selective inhibitors of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. ENBO J., 18: 5922–30.Google Scholar
  32. 32.
    Ferguson, M. A., Brimacombe, J. S., Brown, J. R., Crossman, A., Dix, A., Field, R. A., Guther, M. L., Milne, K. G., Sharma, D. K., and Smith, T. K. (1999) The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim Biophys Acta., 1455: 327–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Medof, M. E., Nagarajan, S., and Tykocinski, M. L. (1996) Cell-surface engineering with GPI-anchored proteins. FASEB J., 10: 574–86.PubMedGoogle Scholar
  34. 34.
    Rushmere, N. K., Van Den Berg, C. W., and Morgan, B. P. (2000) Production and functional characterization of a soluble recombinant form of mouse CD59. Immunology., 99: 326–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Schofield, L., McConville, M. J., Hansen, D., Campbell, A. S., Fraser-Reid, B., Grusby, M. J., and Tachado, S. D. (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science., 283: 225–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kuo-yuan Hwa
    • 1
  1. 1.Institute of Biological Chemistry, Academia SinicaTaiwan

Personalised recommendations