Skip to main content

Red Blood Cell Antigens Responsible for Inherited Types of Polyagglutination

  • Chapter
The Molecular Immunology of Complex Carbohydrates —2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 491))

Abstract

The three described types on inheritable polyagglutination are related to altered carbohydrate structures in glycoproteins or/and glycolipds on the erythrocyte surface. HEMPAS, a condition causing anemia and other patholoGlcal symptoms, is characterized by impaired biosynthesis of N-glycans, mostly those carried by band 3 and band 4.5 erythrocyte membrane proteins. Cad erythrocytes have abnormal glycophorin O-glycans, structurally related to the more common human Sdaand murine CT determinants, and accumulate an Sda-like ganglioside. NOR erythrocytes express recently detected abnormal α -galactose-terminated glycosphingolipids, which strongly react with G. simplicifolia IB4 isolectin, but do not react with human anti-Galαl-3Gal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, E.G., 1999, Tn-syndromeBiochim. Biophys. Acta1455:255.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, D., Cartron, J.-P., Foumet, B., Montreuil, J., van Halbeek, H. and Vliegenthart, J.F.G., 1983, Primary structure of the oligosaccharide determinant of blood group Cad specificityJ. Biol. Chem.258: 7691.

    PubMed  CAS  Google Scholar 

  • Blanchard, D., Piller, F., Gillard, B., Marcus, D.M. and Cartron, J.-P., 1985a, Identification of a novel ganglioside on erythrocytes with blood group Cad specificityJ. Biol. Chem.260: 7813.

    CAS  Google Scholar 

  • Blanchard, D., Capon, C., Leroy, Y., Cartron, J.-P. and Foumet, B., 1985b, Comparative study of glycophorin A derived 0-glycans from human Cad, Sd(a+) and Sd(a-) erythrocytesBiochem. J.232: 813.

    CAS  Google Scholar 

  • Bouhours, J.-F., Bouhours, D.and Delaunay, J., 1985, Abnormal fatty acid composition of erythrocyte glycosphingolipids in congenital dyserythropoietic anemia type IIJ. Lipid Res.26: 435.

    PubMed  CAS  Google Scholar 

  • Charuk, J.H.M., Tan, J., Bernardini, M., Haddad, S., Reihtmeier, R.A.F., Jaeken, H. and Schachter, H., 1995, Carbohydrate-deficient glycoprotein sundrome type II. An autosomal recessive Nacetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS)Eur. J. Biochem.230: 797.

    Article  PubMed  CAS  Google Scholar 

  • Conzelman, A. and Lefrancois, L., 1988, Monoclonal antibodies specific for T cell-associated carbohydrate determinants react with human blood group antigens Cad and Sda J. Exp. Med.167: 119.

    Article  Google Scholar 

  • Conzelman, A. and Kornfeld, S., 1984a, ß-linked N-acetylgalactosamine residues present at the nonreducing termini of 0-linked oligosaccharides of a cloned murine cytotoxic T lymphocyte line are absent in aVicia villosalectin-resistant mutant cell lineJ.Biol. Chem.259: 12528.

    Google Scholar 

  • Conzelman, A. and Kornfeld, S., 1984b, A murine cytotoxic T lymphocyte cell line resistant toVicia villosalectin is deficient in UDP-GalNAc:ß-galactose ß1,4-N-acetylgalactosaminyltransferaseJ.Biol. Chem.259: 12536.

    Google Scholar 

  • Dall’Olio F., Malagolini, N., Joziasse D.H., van den Eijnden, D.R. and Serafini-Cessi, F., 1987, Purification of ß-D-(1–4)-N-acetylgalactosaminyltransferase from guinea pig kidney.Biochem Soc. Trans.15: 399.

    Google Scholar 

  • De Franceschi L., Turrini, F., del Giudice, E.M., Perrotta, S., Olivieri, O., Corrocher, R., Manu, F. and lolacson, A., 1998, Decreased band 3 anion transport activity and band 3 clusterization in congenital dyserythropoietic anemia type IIExp. Hematol.26: 869.

    PubMed  Google Scholar 

  • Dohi, T., Yuyama, Y., Natori, Y., Smith, P.L., Lowe, J.B. and Oshima, M., 1996, Detection of Nacetylgalactosaminyltransferase mRNA which determines expression of Sdablood group carbohydrate structure in human gastrointestinal mucosa and cancerInt. J. Cancer67: 626.

    Article  PubMed  CAS  Google Scholar 

  • Donald, A.S.R. and Feeney, J., 1986, Oligosaccharides obtained from a blood group Sd(a+) Tamm-Horsfall glycoproteinBiochem. J.236: 821.

    PubMed  CAS  Google Scholar 

  • Donald, A.S.R., Yates, A,D., Soh, C.P.C., Morgan, W.T.J. and Watkins, W.M., 1983, A blood group Sdaactive pentasaccharide isolated from Tamm-Horsfall urinary glycoproteinBiochem. Biophys. Res. Commun.115: 625.

    Article  PubMed  CAS  Google Scholar 

  • Donald, A.S.R., Soh, C.P.C., Yates, A.D., Feeney, J., Morgan, W.T.J. and Watkins, W.M., 1987, Structure, biosynthesis and genetics of the SdaantigenBiochem. Soc. Trans.15; 606.

    PubMed  CAS  Google Scholar 

  • Fukuda, M.N., 1990, HEMPAS disease: genetic defect of glycosylationGlycobiology 1:9.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M.N., 1999, HEMPASBiochim. Biophys. Acta1455: 231.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M.N., Bothner, B., Scartezzini, P. and Dell, A., 1986, Isolation and characterization of poly-Nacetyllactosaminyl ceramides accumulated in the erythrocytes of congenital dyserythropoietic anemia type II patientsChem. Phys. Lipids42:185.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M.N., Dell, A. and Scartezzini, P., 1987, Primary defect of congenital dyserythropoietic anemia type II: failure in glycosylation of erythrocyte glycosaminoglycan proteins caused by lowered Nacetylglucosaminyltransferase II, J.Biol. Chem.262: 7195.

    PubMed  CAS  Google Scholar 

  • Fukuda, M.N., Masri, K.A., Dell, A., Luzzato, L. and Moremen, K.W., 1990, Incomplete biosynthesis of Nglycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding amannosidase IIProc. Natl. Acad. Sci. USA87: 7443.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M.N., Gaetani, G.F., Izzo, P., Scartezzini, P. and Dell, A., 1992, Incompletely processed N-glycans of serum glycoproteins in congenital dyserythopoietic anemia type II (HEMPAS)Br. J. Haematol.82: 745.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., 1993, Evolution and and pathophysiology of the human natural anti-a-galactosyl IgG (anti-Gal)antibody.Springer Semin. Immunopathol.15: 155.

    CAS  Google Scholar 

  • Galili, U., Macher, B.A., Buehler, J. and Shohet, S.B., 1985, Human neutral anti-a-glactosyl IgG. II. The specific recognition of a(l-3) linked galactose residuesJ. Exp. Med.162: 573.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Basbaum, C.B., Shohet, S.B., Buehler, J. and Macher, B.A., 1987, Identification of erythrocyte Galal-3Gal glycosphingolipids with a mouse monoclonal antibody, Gal-13J. Biol. Chem.262: 4683.

    PubMed  CAS  Google Scholar 

  • Gasparini, P., Miraglia del Giudice, E, Delaunay, J., Totaro, A., Granatiero, M., Merchionda, S., Zelante, L. and Iolascon, A., 1997, Localization of the congenital dyserythropoietic anemia II locus to chromosome 20g11.2 by genomewide searchAm. J. Hum. Genet.61: 1112.

    Article  PubMed  CAS  Google Scholar 

  • Gillard, B.K., Blanchard, D., Bouhours, J.-F., Cartron,.J.-P., van Kuik, J.A., Kamerling, J.P., Vliegenthart, J.F.G. and Marcus, D.M., 1988, Structure of a ganglioside with Cad blood group antigen activityBiochemistry27:4601.

    Article  PubMed  CAS  Google Scholar 

  • Hanisch, F.-G. and Baldus, S.E., 1997, The Thomsen-Friedenreich (TF) antigen: a critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigenHistol. Histopathol. 12:263.

    PubMed  CAS  Google Scholar 

  • Harris, P.A., Roman, G.K., Moulds, J.J., Bird, G.W.G and Shah, N.G., 1982, An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutinationVox Sang.42: 134.

    Article  PubMed  CAS  Google Scholar 

  • Herkt, F., Parente, J.P., Leroy, Y., Fournet, B., Blanchard, D., Cartron, J.-P., van Halbeek, H. and Vliegenthart, J.F.G., 1985, Structure determination of oligosaccharides isolated from Cad erythrocyte membranes by permethylation analysis and 500 MHz1H-NMR spectroscopyEur. J. Biochem.146: 125.

    Article  PubMed  CAS  Google Scholar 

  • Hiraiwa, N., Tsuyuoka, K., Li, Y-T., Tanaka, M., Seno, T., Okubo, Y., Fukuda, Y., Imura, H. and Kannagi, R., 1990, Gangliosides and sialoglycoproteins carrying a rare blood group antigen determinant, Cad, associated with human cancers as detected by specific monoclonal antibodies.Cancer Res.50: 5497.

    PubMed  CAS  Google Scholar 

  • Huang, C.H. and Blumenfeld, O.O., 1991, Multiple origins of the human glycophorin Stagene. Identification of hot spots for independent unequal recombinations.J. Biol. Chem.266: 23306.

    PubMed  CAS  Google Scholar 

  • Lolascon, A., Miraglia del Giudice, E., Perrotta, S., Granatiero M., Zelante, L. and Gasparini, P., 1997, Exclusion of three candidate genes as determinants of congenital dyserythropoietic anemia type II (CDA II)Blood90: 4197.

    Google Scholar 

  • Lolascon, A., De Matia, D., Perrotta, S., Carella, M., Gasparini, P. and Deliliers, G.L., 1998, Genetic heterogeneity of congenital dyserythropoietic anemia type IIBlood92: 2593.

    Google Scholar 

  • Joziasse, D.H. and Oriol, R., 1999, Xenotransplantation: the importance of the Galα1,3Gal epitope in hyperacute vascular rejection.Biochim. Biophys. Acta1455: 403.

    Article  PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.H. and Shaper, N.L., 1989, Bovine αl-3 galactosyltransferase: isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA.J. Biol. Chem.264: 14290.

    PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Jabs, E.W. and Shaper, N.L., 1991, Characterization of an α1–3galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogeneJ. Biol. Chem.266: 6991.

    PubMed  CAS  Google Scholar 

  • Kameh, H., Landolt-Marticorena, C., Charuk, J.H.M., Schachter, H. and Reithmeier, R.A.F., 1998, Structural and functional consequences of an N-glycosylation mutation (HEMPAS) affecting human erythrocyte membrane glycoproteinsBiochem. Cell Biol.76: 823.

    PubMed  CAS  Google Scholar 

  • Katayama, A., Ogawa, H., Kadomatsu, K., Kurosawa, N., Kobayashi, T., Kaneda, N., Uchimura, K., Yokoyama, I., Muramatsu T. and Takagi, H., 1998, Porcine a-1,3-galactosyltransferase: full length cDNA cloning, genomic organization, and analysis of splicing variantsGlycoconjugate J.15: 583.

    Article  CAS  Google Scholar 

  • Kusnierz-Alejska, G., Duk, M., Stony, J.R., Reid, M.E., Wiecek, B., Seyfried, H. and Lisowska E., 1999, NOR polyagglutination and Staglycophorin in one.family: relation of NOR polyagglutination to terminal a-galactose residues and abnormal glycolipidsTransfusion39: 32.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, R.D., Rajan, V.P., Ruff, M., Kukowska-Latallo, J., Cummings R.D. and Lowe, J.B., 1989, Isolation of a cDNA encoding murine UDP-galactose: β-D-galactosyl-l,4-N-acetyl-D-glucosamine α1,3galactosyltransferase: expression cloning by gene transfer.Proc. Natl. Acad. Sci. USA86: 8227.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, R.D., Rivera-Marrero, C.A., Ernst, L.K., Cummings, R.D. and Lowe, J.B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal: β-D-Gal(1,4)-DGlcNAc α(1,3)-galactosyltransferase cDNAJ. Biol. Chem.265: 7055.

    PubMed  CAS  Google Scholar 

  • Malagolini, N., Dall’Olio, F., Di Stefano, G., Minni, F., Marrano, D. and Serafini-Cessi, F., 1989, Expression of UDP-GalNAc:NeuAcα2–3Galß-R ß1,4(GalNAc to Gal) N-acetylgalactosaminyl-transferase involved in the synthesis of Sdaantigen in human large intestine and colorectal carcinomaCancer Res.49: 6466.

    PubMed  CAS  Google Scholar 

  • Marks, E.W. and Mitus, A.J., 1996, Congenital dyserythropoietic anemiasAmer. J. Hematol. 51:55.

    Article  CAS  Google Scholar 

  • Martin, P.T., Scott, L.J., Porter, B.E. and Sanes, J.R., 1999, Distinct structures and functions of related pre-and postsynaptic carbohydrates at the mammalian neuromuscular junction, Mol. Cell. Neurosci. 13: 105.

    CAS  Google Scholar 

  • Mawby, W.J., Tanner, M.J.A., Anstee, D.J. and Clamp, J.R., 1983, Incomplete glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type IIBrit. J. Haematol.55: 357.

    Article  CAS  Google Scholar 

  • Misago, M., Liao, Y.-F., Kudo, S., Eto, S., Mattei, M.-G., Moremen, K.W. and Fukuda, M.N., 1995, Molecular cloning and expression of cDNAs encoding human a-mannosidase II and a novel amannosidase IIx isozyme.Proc. Natl. Acad Sci. USA92: 11766.

    Article  PubMed  CAS  Google Scholar 

  • Naiki, N., Fong, J., Ledeen, R. and Marcus, D.M., 1975, Structure of the human erythrocyte blood group PI glycosphingolipidBiochemistry14: 4831.

    Article  PubMed  CAS  Google Scholar 

  • Parker, W., Lin, S.S., Yu, P.B., Sood, A., Nakamura, Y.C., Song, A., Everett, M.L. and Platt, J.L., 1999, Naturally occurring anti-αgalactosyl antibodies: relationship to xenoreactive anti-agalactosyl antibodiesGlycobiology9: 865.

    Article  PubMed  CAS  Google Scholar 

  • Piller, F., Blanchard, D., Huet, M. and Cartron, J.-P., 1986, Identification of a α-NeuAc-(2–3)-ß-Dgalactopyranosyl N-acetyl-ß-D-galactopyranosyl-transferase in human kidneyCarbohydr. Res.149: 171.

    Article  PubMed  CAS  Google Scholar 

  • Reed, D.S., Olson, S. and Lefrancois, L., 1998, Glycosyltransferase regulation mediated by pre-TCR signaling in early thymocyte developmentInt. Immunol.10: 445.

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Cessi, F., Malagolini, N. and Dall’Olio, F., 1988, Characterization and partial purification of ß-Nacetylgalactosaminyltransferase from urine of Sd(a+) individualsArch. Biochem. Biophys.266: 573.

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Cessi, F., Malagolini, N., Guerrini, S. and Turrini, I., 1995, A soluble form of Sda-β1,4-Nacetylgalactosaminyltransferase is released by differentiated human colon carcinoma CaCo-2 cellsGlycoconjugate J.12: 773.

    Article  CAS  Google Scholar 

  • Smith, P.L. and Lowe, J.B., 1994, Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the lymphocyte-specific CT oligosaccharide differentiation antigen.J. Biol. Chem.269: 15162.

    PubMed  CAS  Google Scholar 

  • Takeya, A., Hosomi, O. and Kogure, T., 1987, Identification and characterization of of UDPGalNAc:NeuAcα2–3Galβ1–4Glc(NAc) (β-1–4(GalNAc to Gal) N-acetylgalactosaminyltransferase in human plasmaJ. Biochem.101: 251.

    PubMed  CAS  Google Scholar 

  • Teneberg, S., Lönnroth, I., Torres Lopez, J.F., Galili, U., Halvarsson, M.O., Angström, J. and Karlsson, K.-A., 1996, Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNA4β-bindingClostridium difficiletoxin A, human natural anti-α-galactosyl IgG and the monoclonal antibody Gal13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptorGlycobiology6: 599.

    Article  PubMed  CAS  Google Scholar 

  • van Rooijen, J.J.M, Kamerling, J.P. and Vliegenthart, J.F.G., 1998, The abundance of additional Nacetyllactosamine units in N-linked tetraantennary oligosaccharides of human Tamm-Horsfall glycoprotein is a donor specific featureGlycobiology8: 1065.

    Article  PubMed  Google Scholar 

  • van Rooijen, Voskamp, A.F., J.J.M, Kamerling, J.P. and Vliegenthart, F.F.G., 1999, Glycosylation site and site-specific glycosylation in human Tamm-Horsfall glycoproteinGlycobiology9: 21.

    Article  PubMed  Google Scholar 

  • Watkins, W.M., 1995, Sdaand Cad antigens, in Blood Cell Biochemistry, vol. 6: Molecular Basis of Major Human Blood Group Antigens (Cartron, J.-P. and Rouger, P., eds.), Plenum Press, New York, p. 351.

    Google Scholar 

  • Wieslander, J., Manson, O., Kallin, E., Gabrielli, A., Nowack, H. and Timpl, R., 1990, Specificity of human antibodies against Galα1–3Gal carbohydrate epitope and distinction from natural antibodies reacting with Galα1–2Gal or Galα1–4Gal.Glycoconjugate J.7: 85.

    Article  CAS  Google Scholar 

  • Wood, C., Kabat, E.A., Murphy A.L. and Goldstein, I.J., 1979, Immunochemical studies of the combining site of the two isolectins, A4 and B4, isolated from Bandeiraea simplicifolia seeds.Arch. Biochem. Biophys.198: 1.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A.M., Duk, M., Lin, M.C., Broadberry, R.E. and Lisowska, E., 1995a, Identification od variant glycophorins of human erythrocytes by lectinoblotting. Application to MiIII variant which is relatively frequent in Taiwanese population.Transfusion35: 571.

    Article  CAS  Google Scholar 

  • Wu, A.M., Watkins, W.M., Chen, C-P., Song, S-C., Chow, L-P. and Lin, J-Y., 1995b, Native and/or asialoTamm-Horsfall glycoproteins Sd(a+) are important receptors forTriticum vulgaris(wheat germ) agglutinin and for three toxic lectins (abrin-a, ricin and mistletoe toxic lectin-I)FEES Lett.371: 32.

    Article  CAS  Google Scholar 

  • Wu, J.H., Herp, A. and Wu, A.M., 1993, Defining carbohydrate specificity ofRicinus communisagglutinin as Galβ1–4GlcNAc (II) > Galβ1–3G1cNAc (I) > Galαl-3Gal (B) > Galβ1–3GalNAc (T).Mol. Immunol.30: 333.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.H., Watkins, W.M., Chen, C-P., Song, S-C. and Wu, A.M., 1996, Interaction of a human blood group Sd(a-) Tamm-Horsfall glycoprotein with applied lectinsFEBS Lett.384: 231.

    Article  PubMed  CAS  Google Scholar 

  • Zdebska, E., Anselstetter, V.B., Pacuszka, T. and Koscielak, J., 1987, Glycolipids and glycopeptides of red cell membranes in congenital dyserythropoietic anemia type IIBr. J Haematol.66: 385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lisowska, E., Duk, M. (2001). Red Blood Cell Antigens Responsible for Inherited Types of Polyagglutination. In: Wu, A.M. (eds) The Molecular Immunology of Complex Carbohydrates —2. Advances in Experimental Medicine and Biology, vol 491. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1267-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1267-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5469-7

  • Online ISBN: 978-1-4615-1267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics