Skip to main content

Abstract

The superposition principle and entanglement are the central properties for quantum computing, and a fully operational quantum computer can be used to synthesize any desired entangled state of its constituents. In this paper we show that some of the most attractive, and potentially most applicable, multi-particle entangled states are also the ones most easily prepared, and they are already within reach of current experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Shor, In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEE Computer Society, Los Alamos, CA, 1994).

    Google Scholar 

  2. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Article  ADS  Google Scholar 

  3. For a recent review, see D. DiVincenzo, The Physical Implementation of Quantum Computation. To appear in Fortschhritte der Physik, quantph/0002077.

    Google Scholar 

  4. A. Steane, Nature 399, 124 (1999)

    Article  ADS  Google Scholar 

  5. A. Steane, Quantum Computing with Trapped Ions, Atoms and Light, to appear in Fortschritte der Physik, quantph/0004053.

    Google Scholar 

  6. K. Mølmer and A. Sørensen, RISQ - reduced instruction set quantum computers, to appear in J. Mod. Opt.

    Google Scholar 

  7. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

    Article  MathSciNet  Google Scholar 

  8. S. Lloyd, Science 273, 1072 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  10. C. A. Sackett, et al., Nature 404, 256 (2000).

    Article  ADS  Google Scholar 

  11. J. J. Bollinger, et al. Phys. Rev. A 54, 4649 (1996).

    ADS  Google Scholar 

  12. Chris Monroe, private communication.

    Google Scholar 

  13. A. Sørensen and K. Mølmer, Phys. Rev. Lett. .82, 1971 (1999).

    Article  ADS  Google Scholar 

  14. A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, to appear in Phys. Rev. A., quant-ph/0002024.

    Google Scholar 

  15. G. Milburn, Simulating nonlinear spin models in an ion trap, quantph/9908037.

    Google Scholar 

  16. Hans Christian Andersen, The Swineherd, (1842). An english translation of the full text can be found on multiple internet sites, e.g., http://underthesun.cc/Classics/Andersen/FairyTales/swineherd.htm.

    Google Scholar 

  17. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  18. K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).

    Article  ADS  Google Scholar 

  19. Our theoretical proposal requires that all ions experience excursions of same magnitude, which for higher ion numbers only occurs in the centre-ofmass mode, which is therefore the mode applied in our theoretical analysis.

    Google Scholar 

  20. D. V. F. James, Appl. Phys. B. 66, 181 (1998).

    Article  ADS  Google Scholar 

  21. A. Imamoglu et al., Quantum information processing using quantum dot spins and cavity-QED, quant-ph/9904096.

    Google Scholar 

  22. Y. Makhlin et al., Josephson-Junction Qubits with Controlled Couplings, cond-mat/9808067.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mølmer, K., Sørensen, A. (2001). Multi-particle entanglement in quantum computers. In: Averin, D.V., Ruggiero, B., Silvestrini, P. (eds) Macroscopic Quantum Coherence and Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1245-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1245-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5459-8

  • Online ISBN: 978-1-4615-1245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics