Multi-particle entanglement in quantum computers

  • Klaus Mølmer
  • Anders Sørensen


The superposition principle and entanglement are the central properties for quantum computing, and a fully operational quantum computer can be used to synthesize any desired entangled state of its constituents. In this paper we show that some of the most attractive, and potentially most applicable, multi-particle entangled states are also the ones most easily prepared, and they are already within reach of current experiments.


Entangle State Vibrational Motion Gate Operation Vibrational Quantum Number Pauli Spin Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Shor, In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEE Computer Society, Los Alamos, CA, 1994).Google Scholar
  2. [2]
    L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).ADSCrossRefGoogle Scholar
  3. [3]
    For a recent review, see D. DiVincenzo, The Physical Implementation of Quantum Computation. To appear in Fortschhritte der Physik, quantph/0002077.Google Scholar
  4. [4]
    A. Steane, Nature 399, 124 (1999)ADSCrossRefGoogle Scholar
  5. A. Steane, Quantum Computing with Trapped Ions, Atoms and Light, to appear in Fortschritte der Physik, quantph/0004053.Google Scholar
  6. [5]
    K. Mølmer and A. Sørensen, RISQ - reduced instruction set quantum computers, to appear in J. Mod. Opt.Google Scholar
  7. [6]
    R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).MathSciNetCrossRefGoogle Scholar
  8. [7]
    S. Lloyd, Science 273, 1072 (1996).MathSciNetADSCrossRefGoogle Scholar
  9. [8]
    J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).ADSCrossRefGoogle Scholar
  10. [9]
    C. A. Sackett, et al., Nature 404, 256 (2000).ADSCrossRefGoogle Scholar
  11. [10]
    J. J. Bollinger, et al. Phys. Rev. A 54, 4649 (1996).ADSGoogle Scholar
  12. [11]
    Chris Monroe, private communication.Google Scholar
  13. [12]
    A. Sørensen and K. Mølmer, Phys. Rev. Lett. .82, 1971 (1999).ADSCrossRefGoogle Scholar
  14. [13]
    A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, to appear in Phys. Rev. A., quant-ph/0002024.Google Scholar
  15. [14]
    G. Milburn, Simulating nonlinear spin models in an ion trap, quantph/9908037.Google Scholar
  16. [15]
    Hans Christian Andersen, The Swineherd, (1842). An english translation of the full text can be found on multiple internet sites, e.g., Scholar
  17. [16]
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSMATHCrossRefGoogle Scholar
  18. [17]
    K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).ADSCrossRefGoogle Scholar
  19. [18]
    Our theoretical proposal requires that all ions experience excursions of same magnitude, which for higher ion numbers only occurs in the centre-ofmass mode, which is therefore the mode applied in our theoretical analysis.Google Scholar
  20. [19]
    D. V. F. James, Appl. Phys. B. 66, 181 (1998).ADSCrossRefGoogle Scholar
  21. [20]
    A. Imamoglu et al., Quantum information processing using quantum dot spins and cavity-QED, quant-ph/9904096.Google Scholar
  22. [21]
    Y. Makhlin et al., Josephson-Junction Qubits with Controlled Couplings, cond-mat/9808067.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Klaus Mølmer
    • 1
  • Anders Sørensen
    • 1
  1. 1.Institute of Physics and AstronomyUniversity of AarhusÅrhus CDenmark

Personalised recommendations