Advertisement

Immune Tolerance and the Nervous System

  • David E. Anderson
  • David A. Hafler
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 490)

Abstract

The immune system exists to protect the body from infection by a plethora of microorganisms, including bacteria, viruses, and parasites. This is accomplished by a variety of interdependent methods. The skin is an often overlooked but extremely effective barrier to infection, and is one of several innate mechanisms of immunity. NK cells, which appear to primarily recognize changes in the levels of major histocompatability complex class I (MHC cl) molecules expressed on cells within the body, represent another form of innate immunity. They represent a form of innate immunity because while they can protect the body against tumor cells or virally-infected cells, which often have altered levels of MHC cI expression, they have no “memory” of a given prior viral infection or particular type of tumor. This contrasts with T cells and B cells which comprise the specific immune response. A given T cell or B cell and its clonal progeny are all specific for a given foreign microbial antigen, and furthermore, can “remember” a prior encounter with that antigen and effectively remove it much more quickly upon secondary exposure to the antigen. This phenomena is the basis for vaccination. Thus, after vaccination with exposure to antigens from a particular virus or bacterium with adjuvant, there is activation and expansion of T cells and B cells with specific receptors for those particular antigens. If some years later the same individual is exposed to the infectious virus or bacteria, the T cells and B cells which have been previously activated and expanded will be mobilized very quickly and in most cases eliminate the infectious agent before it can do any harm to the body.

Keywords

Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Negative Selection Experimental Allergic Encephalomyelitis Cell Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Markowitz, J., H. J. Auchincloss, M. Gursby, et al. 1993. Class II-positive hematopoietic cells cannot mediate positive selection of CD4+ T lymphocytes in class II-deficient mice. Proc. Natl. Acad. Sci. USA 90:2779.PubMedCrossRefGoogle Scholar
  2. 2.
    Laufer, T., J. DeKoning, J. Markowitz, et al. 1996. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383:81.PubMedCrossRefGoogle Scholar
  3. 3.
    Lauter, T.M., L. Fan, and L.H. Glimcher. 1999. Self-reactive T cells selected on thymic cortical epithelium are polyclonal and are pathogenic in vivo. J. Immunol. 162:5078.Google Scholar
  4. 4.
    Surh, C. and J. Sprent. 1994. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100.PubMedCrossRefGoogle Scholar
  5. 5.
    Oukka, M., E. Colucci-Guyon, P. Tran et al. 1996. CD4 T cell tolerance to nuclear proteins induced by medullary thymic epithelium. Immunity 4:545.PubMedCrossRefGoogle Scholar
  6. 6.
    Evavold, B. D. and P. M. Allen. 1991. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252:1308.PubMedCrossRefGoogle Scholar
  7. 7.
    Allen, P. 1994. Peptides in positive and negative selection: a delicate balance. Cell 76:593.PubMedCrossRefGoogle Scholar
  8. 8.
    Vidal, K., B. Hsu, C. Williams et al. 1996. Endogenous altered peptide ligands can affect peripheral T cell responses. J. Exp. Med. 183:1311.PubMedCrossRefGoogle Scholar
  9. 9.
    Bevan, M. 1997. In thymic selection, peptide diversity gives and takes away. Immunity 7:175.PubMedCrossRefGoogle Scholar
  10. 10.
    Ignatowicz, L., J. Kappler and P. Marrack. 1996. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84:521.PubMedCrossRefGoogle Scholar
  11. 11.
    Grubin, C., S. Kovats, P. deRoos et al. 1997. Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II-bound self-peptides. Immunity 7:197.PubMedCrossRefGoogle Scholar
  12. 12.
    Surh, C., D. Lee, W. Fung-Leung et al. 1997. Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity 7:209.PubMedCrossRefGoogle Scholar
  13. 13.
    Ashton-Rickardt, P. G., A. Bandeira, J. R. Delaney et al. 1994. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76:651.PubMedCrossRefGoogle Scholar
  14. 14.
    Girao, C., Q. Hu, J. Sun et al. 1997. Limits to the differential avidity model of T cell selection in the thymus. J Immunol. 159:4205.PubMedGoogle Scholar
  15. 15.
    Hogquist, K. A., S. C. Jameson, W. R. Health et al. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17.PubMedCrossRefGoogle Scholar
  16. 16.
    Hogquist, K., S. Jameson and M. Bevan. 1995. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3:79.PubMedCrossRefGoogle Scholar
  17. 17.
    Sebzda, E., V. Wallace, J. Mayer et al. 1994. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263:1615.PubMedCrossRefGoogle Scholar
  18. 18.
    Cook, J., E. Wormstall, T. Hornell et al. 1997. Quantitation of the cell surface level of Ld resulting in positive versus negative selection of the 2C transgenic T cell receptor in vivo. Immunity 7:233.CrossRefGoogle Scholar
  19. 19.
    Alam, S., P. Travers, J. Wung et al. 1996. T-cell-receptor affinity and thymocyte positive selection. Nature 381:616.PubMedCrossRefGoogle Scholar
  20. 20.
    Langman, R. and M. Cohn. 1996. Terra Firma: A retreat from danger. J. Immunol. 157:4273.PubMedGoogle Scholar
  21. 21.
    Cohen, J. 1993. Apoptosis. Immunol. Today 14:126.PubMedCrossRefGoogle Scholar
  22. 22.
    Le, P., H. Maecher and J. Cook. 1995. In situ detection and characterization of apototic thymocytes in human thymus. Expression of bcl-2 in vivo does not prevent apoptosis. J. Immunol. 154:4371.PubMedGoogle Scholar
  23. 23.
    Liu, G., P. Farichild, R. Smith et al. 1995. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3:407.PubMedCrossRefGoogle Scholar
  24. 24.
    Kanagawa, O., S. Martin, B. Vaupel et al. 1998. Autoreactivity of T cells from nonobese diabetic mice: an I-Ag7-dependent reaction. Proc. Natl. Acad. Sci. USA 95:1721.PubMedCrossRefGoogle Scholar
  25. 25.
    Ridgway, W.M., Fasso, M. and Fathman, C.G. 1999. A new look at MHC and autoimmune disease. Science 284:749.PubMedCrossRefGoogle Scholar
  26. 26.
    Ota, K., M. Matsui, E. Milford et al. 1990. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346: 183.PubMedCrossRefGoogle Scholar
  27. 27.
    Scholz, C., K. Patton, D. Anderson et al. 1998. Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J. Immunol. 160:1532.PubMedGoogle Scholar
  28. 28.
    Zhang, J., S. Markovic, J. Raus et al. 1994. Increased frequency of IL-2 responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med. 179:973.PubMedCrossRefGoogle Scholar
  29. 29.
    Lovett-Racke, A., J. Trotter, J. Lauber.et al. 1998. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients.J. Clin. Invest.101:725.PubMedCrossRefGoogle Scholar
  30. 30.
    Lovett-Racke, A., J. Trotter, J. Lauber. et al. 1998. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. J. Clin. Invest. 101:725.PubMedCrossRefGoogle Scholar
  31. 31.
    Lenschow, D. and J.A. Bluestone. 1996. CD28/B7 system of T cell costimulation. Ann. Rev. Immunol. 14:233.CrossRefGoogle Scholar
  32. 32.
    Tivol, E., A.N. Schweitzer, and A.H. Sharpe. 1996. Costimulation and autoimmunity. Curr. Opin. Immunol. 822.Google Scholar
  33. 33.
    Linsley, P. 1995. Distinct roles for CD28 and cytotoxic T lymphocyte-associated molecule-4 receptors during T cell activation? J. Exp. Med. 182:289.PubMedCrossRefGoogle Scholar
  34. 34.
    Thompson, C.B., and Allison, J.P. 1997. The emerging role of CTLA-4 as an immune attenuator. Immunity 7:445.PubMedCrossRefGoogle Scholar
  35. 35.
    Jenkins, M. K., D. M. Pardoll, J. Mizuguchi et al. 1987. T-cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunological Reviews 95:113.PubMedCrossRefGoogle Scholar
  36. 36.
    Karpus, W., J. Pope, J. Peterson et al. 1995. Inhibition of Theiler’s virus-mediated demyelination by peripheral immune tolerance induction. J. Immunol. 155:947.PubMedGoogle Scholar
  37. 37.
    Kennedy, K., W. Smith, S. Miller et al. 1997. Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis: a comparison between oral and peripheral tolerance. J. Immunol. 159:1036.PubMedGoogle Scholar
  38. 38.
    Vandenbark, A., B. Celnik, M. Vainiene et al. 1995. Myelin antigen-coupled splenocytes suppress experimental autoimmune encephalomyelitis in Lewis rats through a partially reversible energy mechanism. J. Immunol. 155:5861.PubMedGoogle Scholar
  39. 39.
    Boussiotis, V., D. Barber, T. Nakaria et al. 1994. Prevention of T cell energy by signaling through the gamma c chain of the IL-2 receptor. Science 266:1039.PubMedCrossRefGoogle Scholar
  40. 40.
    Linsley, P. S., P. M. Wallace, J. Johnson et al. 1992. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257:792.PubMedCrossRefGoogle Scholar
  41. 41.
    Milich, D., M. Chen, J. Hughes et al. 1998. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J. Immunol. 160:2013.PubMedGoogle Scholar
  42. 42.
    Wallace, P., J. Rodgers, G. Leytze et al. 1995. Induction and reversal of long-lived specific unresponsiveness to a T-dependent antigen following CTLA4Ig treatment. J. Immunol. 154:5885.PubMedGoogle Scholar
  43. 43.
    Finck, B., P. Linsley and D. Wofsy. 1994. Treatment of murine lupus with CTLA4Ig. Science 265:1225.PubMedCrossRefGoogle Scholar
  44. 44.
    Arima, T., A. Rehman, W. Hickey et al. 1996. Inhibition by CTLA4Ig of experimental allergic encephalomyelitis. J Immunol. 156:4916.PubMedGoogle Scholar
  45. 45.
    Lenschow, D. J., Y. Zeng, J. R. Thistlethwaite et al. 1992. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA41g. Science 257:789.PubMedCrossRefGoogle Scholar
  46. 46.
    Larsen, C., E. Elwood, D. Alexander et al. 1996. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434.PubMedCrossRefGoogle Scholar
  47. 47.
    Kirk, A., D. Harlan, N. Armstrong et al. 1997. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci USA 94:8789.PubMedCrossRefGoogle Scholar
  48. 48.
    Balasa, B., T. Krahl, G. Patstone et al. (1997). CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J. Immunol. 159:4620.PubMedGoogle Scholar
  49. 49.
    Critchfield, J., M. Racke, J. Zuniga-Pflucker et al. 1994. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263: 1139.PubMedCrossRefGoogle Scholar
  50. 50.
    Van Parijs, L., A. Biuckians, A. Ibragimov et al. 1997. Functional responses and apoptosis of CD25 (IL-2R alpha)-deficient T cells expressing a transgenic antigen receptor. J Immunol. 158:3738.PubMedGoogle Scholar
  51. 51.
    Noel, P., L. Biose and C. Thompson. 1996. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol. 157:636.PubMedGoogle Scholar
  52. 52.
    Boise, L., A. Minn, P. Noel et al. 1995. CD28 costimulation can promote T cell survival by enhancing the expression of Bel-XL. Immunity 3:87.PubMedCrossRefGoogle Scholar
  53. 53.
    Mueller, D., S. Seiffert, W. Fang et al. 1996. Differential regulation of bc1–2 and bel-x by CD3, CD28, and the IL-2 receptor in cloned CD4+ helper T cells. A model for the long-term survival of memory cells. J Immunol. 156:1764.PubMedGoogle Scholar
  54. 54.
    Radvanyi, L., Y. Shi, H. Vaziri et al. 1996. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J. Immunol. 156:1788.PubMedGoogle Scholar
  55. 55.
    Nakajima, H. and W. Leonard. 1997. Impaired peripheral deletion of activated T cells in mice lacking the common cytokine receptor gamma-chain: defective Fas ligand expression in gamma-chain-deficient mice. J. Immunol. 159:4737.PubMedGoogle Scholar
  56. 56.
    Brunner, T., R. Mogil, D. LaFace et al. 1995. Cell-autonomous Fas (CD95) /Fas ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373:441.PubMedCrossRefGoogle Scholar
  57. 57.
    Dhein, J., H. Walczak, C. Baumler et al. 1995. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373:438.PubMedCrossRefGoogle Scholar
  58. 58.
    Ju, S., D. Panka, H. Cut et al. 1995. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444.PubMedCrossRefGoogle Scholar
  59. 59.
    Ettinger, R., J. Wang, P. Bossu et al. 1994. Functional distinctions between MRL-1pr and MRL-gld lymphocytes. Normal cells reverse the gld but not 1pr immunoregulatory defect. J. Immunol. 152:1557.Google Scholar
  60. 60.
    Nagata, S. and P. Golstein. 1995. The Fas death factor. Science 267:1449.PubMedCrossRefGoogle Scholar
  61. 61.
    Streilein, J. 1996. Unraveling immune privilege. Science 270:1158.CrossRefGoogle Scholar
  62. 62.
    Streilein, J., B. Ksander and A. Taylor. 1997. Immune deviation in relation to ocular immune privilege. J. Immunol. 158:3557.PubMedGoogle Scholar
  63. 63.
    Griffith, T., T. Brunner, S. Fletcher et al. 1996. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189.CrossRefGoogle Scholar
  64. 64.
    Vella, A., J. McCormack, P. Linsley et al. 1995. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2:261.PubMedCrossRefGoogle Scholar
  65. 65.
    Pape, K., A. Khoruts, A. Mondino et al. 1997. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J Immunol. 159:591.PubMedGoogle Scholar
  66. 66.
    Abbas, A., K. Murphy and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383:787.PubMedCrossRefGoogle Scholar
  67. 67.
    O’Garra, A. (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283.PubMedCrossRefGoogle Scholar
  68. 68.
    Fiorentino, D., A. Zlotnik, T. Mosmann et al. 1991. IL-I0 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815.PubMedGoogle Scholar
  69. 69.
    Wang, P., P. Wu, M. Siegel et al. 1994. IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol. 153:811.PubMedGoogle Scholar
  70. 70.
    Powrie, F., S. Menon and R. Coffman. 1993. Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur. J. Immunol. 23:3043.Google Scholar
  71. 71.
    . Pajkrt, D., L. Camoglio, M. Tiel-van Buul et al. 1997. Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia: effect of timing of recombinant human IL-10 administration. J. Immunol. 158:3971. PubMedGoogle Scholar
  72. 72.
    Bright, J., L. Kerr and S. Sriram. 1997. TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak-1 and Stat 5 in T lymphocytes. J. Immunol. 159:175.PubMedGoogle Scholar
  73. 73.
    Chen, Y., J. Inobe and H. Weiner. 1995. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediated active suppression. J. Immunol. 155:910.PubMedGoogle Scholar
  74. 74.
    Weiner, H. 1997. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18:335.PubMedCrossRefGoogle Scholar
  75. 75.
    Khoury, S. J., W. W. Hancock and H. L. Weiner. 1992. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with down-regulation of inflammatory cytokines and differential upregulation of TGF-D, IL-4 and PGE expression in the brain. J. Exp. Med. 176:1355.PubMedCrossRefGoogle Scholar
  76. 76.
    Fukaura, H., S. Kent, M. Pietrusewicz et al. 1996. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-01-secreting Th3 T cells by oral administration of myelin in multiple sclerosis. J. Clin. Invest. 98:70.PubMedCrossRefGoogle Scholar
  77. 77.
    Nicholson, L. and V. Kuchroo. 1996. Manipulation of the Thl/Th2 balance in autoimmune disease. Curr. Opin. Immunol. 837.Google Scholar
  78. 78.
    Khoruts, A., S. Miller and M. Jenkins. 1995. Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Thl cells. J Immunol. 155:5011.PubMedGoogle Scholar
  79. 79.
    Cua, D., D. Hinton and S. Stohlman. 1995. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J. Immunol. 155:4052.PubMedGoogle Scholar
  80. 80.
    Falcone, M. and B. Bloom. 1997. A T helper cell 2 (Th2) immune response against non-self antigens modifies the cytokine profile of autoimmune T cells and protects against experimental allergic encephalomyelitis. J. Exp. Med. 185:901.PubMedCrossRefGoogle Scholar
  81. 81.
    Racke, M., A. Bonomo, D. Scott et al. 1994. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180:1961.PubMedCrossRefGoogle Scholar
  82. 82.
    Shaw, M., J. Lorans, A. Dhawan et al. 1997. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J. Exp. Med. 185:1711.PubMedCrossRefGoogle Scholar
  83. 83.
    Mathisen, P., M. Yu, J. Johnson et al. 1997. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J. Exp. Med. 186:159.PubMedCrossRefGoogle Scholar
  84. 84.
    Williams, K. and W. Hickey. 1995. Traffic of hematogenous cells through the central nervous system. Curr. Top. Microbiol. Immunol. 202:221.PubMedCrossRefGoogle Scholar
  85. 85.
    Akkaraju, S., W. Ho, D. Leong et al. 1997. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 7:255.PubMedCrossRefGoogle Scholar
  86. 86.
    Ferber, I., G. Schcnrich, J. Schenkel et al. 1994. Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 263:674.PubMedCrossRefGoogle Scholar
  87. 87.
    Rocha, B., A. Grandien and A. Freitas. 1995. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J. Exp. Med. 181:993.PubMedCrossRefGoogle Scholar
  88. 88.
    Weissman, I. 1994. Developmental switches in the immune system. Cell 76:207.PubMedCrossRefGoogle Scholar
  89. 89.
    Melamed, D. and D. Nemazee. 1997. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc. Natl. Acad. Sci. USA 94:9267.PubMedCrossRefGoogle Scholar
  90. 90.
    Melamed, D., R. Benschop, J. Cambier et al. 1998. Developmental regulation of f3 lymphocyte immune tolerance compartmentalized clonal selection from receptor selection. Cell 92:173.PubMedCrossRefGoogle Scholar
  91. 91.
    Lang, J., B. Arnold, G. Hammerling et al. 1997. Enforced Bc1–2 expression inhibits antigen-mediated clonal elimination of peripheral B cells in an antigen dose-dependent manner and promotes receptor editing in autoreactive, immature B cells. J. Exp. Med. 186:1513.PubMedCrossRefGoogle Scholar
  92. 92.
    Nemazzee, D. and K. Burki. 1989. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337:562.CrossRefGoogle Scholar
  93. 93.
    . Nossal, G. and B. Pike. 1980. Clonal energy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc. Natl. Acad. Sci. USA 77:1602. PubMedCrossRefGoogle Scholar
  94. 94.
    Goodnow, C. C. 1992. Transgenic mice and analysis of B-cell tolerance. Annual Review of Immunology 10:489.PubMedCrossRefGoogle Scholar
  95. 95.
    Fulcher, D. and A. Basten. 1994. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med. 179:125.PubMedCrossRefGoogle Scholar
  96. 96.
    Cyster, J., S. Hartley and C. Goodnow. 1994. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371:389.PubMedCrossRefGoogle Scholar
  97. 97.
    Nikolic, B. and M. Sykes. 1997. Bone marrow chimerism and transplantation tolerance. Curr. Opin. Immunol. 9:634.PubMedCrossRefGoogle Scholar
  98. 98.
    Burt, R., W. Burns and S. Miller. 1997. Bone marrow transplantation for multiple sclerosis: returning to Pandora’s box. Immunol. Today 18:559.PubMedCrossRefGoogle Scholar
  99. 99.
    Fassas, A., A. Anagnostopoulos, A. Kazis et al. 1997. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Trans. 20:631.CrossRefGoogle Scholar
  100. 100.
    Krance, R. and M. Brenner. 1998. BMT beats autoimmune disease. Nature Med. 4:153.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David E. Anderson
    • 1
  • David A. Hafler
    • 1
  1. 1.Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical SchoolHarvard Institutes of MedicineBostonUSA

Personalised recommendations