The Role of MHC Class II Molecules in the Pathogenesis and Prevention of Type I Diabetes

  • Hugh McDevitt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 490)


Although strong associations, and genetic linkage between the Human Leukocyte Antigen (HLA) complex and susceptibility to a wide variety of autoimmune diseases has been documented for the last 30 years, the mechanisms by which genes in the major histocompatibility complex (MHC) mediate susceptibility to autoimmunity remain poorly understood.’ While the primary functions of the MHC Class I and Class II molecules—antigen presentation of peptides to the receptors on T-cells, and T-cell positive and negative selection in the thymus—are now well documented and at least partially delineated, the precise molecular mechanisms by which particular alleles of MHC Class I or Class II molecules increase or decrease susceptibility to autoimmune diseases have not yet been worked out.


Major Histocompatibility Complex Human Leukocyte Antigen Major Histocompatibility Complex Class Glutamic Acid Decarboxylase Peptide Epitope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tisch and H.O. McDevitt, Insulin-dependent diabetes mellitusCell85, 291–297 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    Acha-Orbea and H.O. McDevitt, The first external domain of the non-obese diabetic mouse class II I-AB chain is uniqueProc. Natl. Acad. Sci.84(8), 4591–4595 (1987).Google Scholar
  3. 3.
    R. Tisch, X. Yang, S. M. Singer, R.S. Liblau, L. Fugger, and H.O. McDevitt, Immune response to glutamic acid decarboxylase correlates with insulitis onset in non-obese diabetic miceNature366(640), 72–75 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    D.L. Kaufman, M. Clare-Saizler, J. Tian, T. Forsthuber, G. S. P. Ting, P. Robinson, M. A. Atkinson, E. E. Sercarz, A. J. Tobin, and P. V. Lehmann, Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetesNature366(6450), 69–72 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Daniel and D. R. Wegmann, Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23)Proc. Natl. Acad. Sci.93, 956–960 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    I. R. Cohen, Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetesAnmu. Rev. Immunol.9:567–589 (1991).CrossRefGoogle Scholar
  7. 7.
    R. Tisch, R. S. Liblau, X-D. Yang, P. Liblau, and H. O. McDevitt, Induction of GAD 65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic miceDiabetes47(6), 1570–1577 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Tisch, B. Wang, and D. V. Serreze, Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent, J.Immunol.163(3), 1178–1187 (1999).PubMedGoogle Scholar
  9. 9.
    M. A. Atkinson, N. K. Maclaren, and R. Luchetta, Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapyDiabetes39(8), 933–937 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Elias, T. Reshef, O. S. Birk, R. van der Zee, M. D. Walker, and I. R. Cohen, Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65kDa heat shock proteinProc. Natl. Acad Sci.88(8), 3088–3091 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    J-W. Yoon, C-S. Yoon, H-W. Lim, Q. Q. Huang, Y. Kang, K. H. Pyun, K. Hirasawa, R. S. Sherwin, H-S. Jun, Control of autoimmune diabetes in NOD Mice by GAD expression or suppression in B cellsScience284(5417), 1183–1187 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    C-C. Chao, H-K. Sytwu, E. L. Chen, J. Toma, and H. O. McDevitt, The role of MHC class II molecules in susceptibility to type I diabetes: identification of peptide epitopes and characterization of the T cell repertoireProc. Natl. Acad. Sci.96(16), 9299–9304 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    S. M. Singer, R. Tisch, X-D. Yang, H-K. Sytwu, R. S. Liblau, and H. O. McDevitt, Prevention of diabetes in NOD mice by a mutated I-Ab transgeneDiabetes47(10), 1570–1577 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Rammensee, T. Friede, and S. Stevanoviic, MHC ligands and peptide motifs: first listingImmunogenetics41(4), 178–228 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    O. Kanagawa, S. M. Martin, B. A. Vaupel, E. Carrasco-Marin, and E. R. Unanue, Autoreactivity of T cells from nonobese diabetic mice: an I-A g7-dependent reactionProc. Natl. Acad. Sci.95(4), 1721–1724 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    W. M. Ridgway, M. Fasso, A. Lanctot, C. Garvey, and C. G. Fathman, Breaking self-tolerance in nonobese diabetic mice, JExp. Med.183(4), 1657–1662 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    N. R. Pritchard, A. J. Cutler, S. Uribe, S. J. Chadban, B. J. Morley, and K. G. C. Smith, Autoimmune-prone mice share a promoter haplotype associated with reduced expressino and function of the Fc receptor FcyRIICurr Bio110:227–230 (2000).CrossRefGoogle Scholar
  18. 18.
    O. Rolandsson, E. Hagg, C. Hampe, E. P. Sullivan Jr., M. Nilsson, G. Jansson, G. Hallmans, and A. Lernmark, Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass indexDiabetologia42(5), 555–559 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Congia, S. Patel, A. P. Cope, S. De Virgiliis, and G. Sonderstrup, T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulinProc. Natl. Acad. Sci.95(7), 3833–3838 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    A. E. Herman, R. Tisch, S. D. Patel, S. L. Parry, J. Olson, J. A. Noble, A. P. Cope, B. Cox, M. Congia, and H. O. McDevitt, Determination of autoantigenic peptides presented by the diabetes-associated HLA-DQ8 class II molecule identifies a motif and responses in individuals with typeIdiabetes,J. Immunol.163:6275–6282 (1999).PubMedGoogle Scholar
  21. 21.
    R. S. Abraham and C. S. David, Identification of HLA-class-II-restricted epitopes of autoantigens in transgenic miceCurr. Opin. Immunol.12(1), 122–129 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hugh McDevitt
    • 1
  1. 1.Departments of Microbiology and Immunology, and MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations