Advertisement

Factors Contributing to Autoimmune Disease

  • Kristine M. Garza
  • Linh T. Nguyen
  • Russell G. Jones
  • Pamela S. Ohashi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 490)

Abstract

T cells that emigrate from the thymus with specificities towards self-antigens face one of two fates. They either remain in the peripheral repertoire if they are immunologically unaware or ignorant of their cognate ligand., or if they encounter sufficient concentrations of their cognate ligand, the self-reactive T cells are subject to peripheral tolerance. Pathological autoimmunity can arise when either or both of these mechanisms are breached.

Keywords

Cell Tolerance Cell Deletion Antigen Present Cell Activation Survival Molecule Cell Receptor Transgenic Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lenardo MJ, Chan FKM, Hornung F, et al: Mature T Lymphocyte Apoptosis -immune regulation in a dynamic and unpredictable environment. Annu Rev Immunol 17:221–253, 1999PubMedCrossRefGoogle Scholar
  2. 2.
    Nepom GT, Erlich H: MHC class II molecules and autoimmunity. Annu Rev Immunol 9:493–525, 1991PubMedCrossRefGoogle Scholar
  3. 3.
    Wicker LS: Major histocompatability complex-linked control of autoimmunity. J Exp Med 186:973–975, 1997PubMedCrossRefGoogle Scholar
  4. 4.
    Ohteki T, Hessel A, Bachmann MF, et al: Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur J Immunol 29:2886–2896, 1999PubMedCrossRefGoogle Scholar
  5. 5.
    Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger J: Chlamydia infections and heart disease linked through antigenic mimicry. Science 26:1238–1239, 1999Google Scholar
  6. 6.
    Gammon G, Sercarz EE, Benichou G: The dominant self and the cryptic self: shaping the autoreactive T cell repertoire. Immunol Today 12:193–195, 1991PubMedCrossRefGoogle Scholar
  7. 7.
    Lehmann PV, Sercarz EE, Forsthuber T, Dayan CM, Gammon G: Determinant spreading and the dynamics of the autoimmune T cell repertoire. Immunol Today 145:203–208, 1993CrossRefGoogle Scholar
  8. 8.
    von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA: Coexpression of B7–1 and viral (“self”) transgenes in pancreatic p cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3:727–738, 1995CrossRefGoogle Scholar
  9. 9.
    Harlan DM, Hengartner H, Huang ML, et al: Mice expressing both B7 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cell develop diabetes due to a breakdown of T lymphocyte unresponsiveness. Proc Natl Acad Sci USA 91:3137–3141, 1994PubMedCrossRefGoogle Scholar
  10. 10.
    Falcone M, Sarvetnick N: Cytokines that regulate autoimmune responses. Curr Opin Immunol 11:670–676, 1999PubMedCrossRefGoogle Scholar
  11. 11.
    Singh VK, Mehrotra S, Agarwal SS: The paradigm of Thl and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res 20:147–161, 1999PubMedCrossRefGoogle Scholar
  12. 12.
    Gleeson PA, Toh B-H, van Driel IR: Organ-specific autoimmunity induced by lymphopenia. Immunol Rev 149:97–125, 1996PubMedCrossRefGoogle Scholar
  13. 13.
    Mason D, Powrie F: Control of immune pathology by regulatory T cells. Curr Opin Immunol 10:649–655, 1998PubMedCrossRefGoogle Scholar
  14. 14.
    Seddon B, Mason D: The third function of the thymus. Immunol Today 21:95–99, 2000PubMedCrossRefGoogle Scholar
  15. 15.
    Ohashi PS, Oehen S, Bürki K, et al: Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317, 1991PubMedCrossRefGoogle Scholar
  16. 16.
    Gill RG, Coulombe M, Lafferty KJ: Pancreatic islet allograft immunity and tolerance: the two-signal hypothesis revisited. Immunol Rev 149:75–96, 1996PubMedCrossRefGoogle Scholar
  17. 17.
    Shortman K, Wu L, Süss G, et al: Dendritic cells and T lymphocytes: developmental and functional interactions. Ciba Foundation Symposium 204:130–141, 1997PubMedGoogle Scholar
  18. 18.
    Fazekas de St.Groth B: The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol Today 19:448–454, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392:245–252, 1998PubMedCrossRefGoogle Scholar
  20. 20.
    Eynon EE, Parker DC: Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med 175:131–138, 1992PubMedCrossRefGoogle Scholar
  21. 21.
    Fuchs E, Matzinger PB: cells turn off virgin butn of memory T cells. Science 258:1156–1159, 1992PubMedCrossRefGoogle Scholar
  22. 22.
    Rocken M, Urban JF, Shevach EM: Infection breaks T-cell tolerance. Nature 359:79–82, 1992PubMedCrossRefGoogle Scholar
  23. 23.
    Ehl S, Hornbach J, Aichele P, et al: Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+T cells to cause immunopathology. J Exp Med 187:763–774, 1998PubMedCrossRefGoogle Scholar
  24. 24.
    Rolink A, Melchers F, Andersson B: The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 5:319–330, 1996PubMedCrossRefGoogle Scholar
  25. 25.
    Grewal IS, Flavell RA: CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135, 1998PubMedCrossRefGoogle Scholar
  26. 26.
    Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+T-helper and a T-killer cell. Nature 393:474–478, 1998PubMedCrossRefGoogle Scholar
  27. 27.
    Bennet SRM, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480, 1998CrossRefGoogle Scholar
  28. 28.
    Schoenberger SP, Toes REM, van der Voort EIH, Offringa R, Melief CJM: T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393:480–483, 1998PubMedCrossRefGoogle Scholar
  29. 29.
    Garza KM, Chan SM, Suri R, et al: Role of antigen presenting cells in mediating tolerance and autoimmunity. J Exp Med 191:2021–2027, 2000PubMedCrossRefGoogle Scholar
  30. 30.
    Cella M, Sheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747, 1996PubMedCrossRefGoogle Scholar
  31. 31.
    Ohteki T, Fukao T, Suzue K, et al: Interleukin-12 dependent interferon-i production by CD8a+ lymphoid dendritic cells. J Exp Med 189:1981–1986, 1999PubMedCrossRefGoogle Scholar
  32. 32.
    Grewal IS, Foellmer HG, Grewal KD, et al: Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 273:1864–1867, 1996PubMedCrossRefGoogle Scholar
  33. 33.
    Green DR, Scott DW: Activation-induced apoptosis in lymphocytes. Curr.Opin.Immunol. 6:476–487, 1994PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317, 1992PubMedCrossRefGoogle Scholar
  35. 35.
    Nagata S, Suda T: Fas and Fas ligand: Ipr and gld mutations. Immunol Today 16:39–43, 1995PubMedCrossRefGoogle Scholar
  36. 36.
    Russell JH, Rush B, Weaver C, Wang R: Mature T cells of autoimmune 1pr/lpr mice have a defect in antigen-stimulated suicide. Proc Natl Acad Sci USA 90:4409–4413, 1993PubMedCrossRefGoogle Scholar
  37. 37.
    Scott DE, Kisch WJ, Steinberg AD: Studies of T cell deletion and T cell anergy following in vivo administration of SEB to normal and lupus-prone mice. J Immunol 150:664–672, 1993PubMedGoogle Scholar
  38. 38.
    Singer GG, Abbas AK: The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1:365–371, 1994PubMedCrossRefGoogle Scholar
  39. 39.
    Kurts C, Heath WR, Kosaka H, Miller JF, Carbone FR: The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1). J Exp Med 188:415–420, 1998PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou T, Edwards III CK, Yang P, Wang Z, Bluethmann, H, Mountz JD: Greatly accelerated lymphadenopathy and autoimmune disease in 1pr mice lacking tumor necrosis factor receptor I. J Immunol 156:2661–2665, 1996PubMedGoogle Scholar
  41. 41.
    Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ: Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348–351, 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Sytwu, H.-K., Liblau, R.L. & McDevitt, H.O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5:17–30,1996PubMedCrossRefGoogle Scholar
  43. 43.
    Speiser DE, Sebzda E, Ohteki T, et al: Tumor necrosis factor receptor p55 mediates deletion of peripheral cytotoxic T lymphocytesin vivo.Eur J Immunol 26:3055–3060, 1996PubMedCrossRefGoogle Scholar
  44. 44.
    Nguyen LT, McKall-Faienza K, Zakarian A, Speiser DE, Mak TW, Ohashi PS: TNF receptor 1 (TNFR1) and CD95 are not required for T cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. Eur J Immunol 30:683–688, 2000PubMedCrossRefGoogle Scholar
  45. 45.
    Zimmermann C, Rawiel M, Blaser C, Kaufmann M, PircherHHomeostatic regulation of CD8+T cells after antigen challenge in the absence of Fas (CD95). Eur J Immunol. 26:2903–2910, 1996PubMedCrossRefGoogle Scholar
  46. 46.
    Ehl S, Hoffmann-Rohrer U, Nagata S, Hengartner H, Zinkemagel R: Different susceptibility of cytotoxic T cells to CD95 (Fas/Apo-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol 156:2357–2360, 1996PubMedGoogle Scholar
  47. 47.
    Reich A, Komer H, Sedgwick JD, Pircher H: Immune down-regulation and peripheral deletion of CD8 T cells does not require TNF receptor-ligand interactions nor CD95. Eur J Immunol 30:678–682, 2000PubMedCrossRefGoogle Scholar
  48. 48.
    Boise LH, Minn AJ, Noel PJ, et al: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity 3:87–98, 1995PubMedCrossRefGoogle Scholar
  49. 49.
    Radvanyi L, Shi Y, Vaziri H, et al: CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol 156:1788–1798, 1996PubMedGoogle Scholar
  50. 50.
    Vella AT, Mitchell T, Groth B, et al: CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol 158:4714–4720, 1997PubMedGoogle Scholar
  51. 51.
    Coffer PJ, Jin J, Woodgett JR: Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335:1–13, 1998PubMedGoogle Scholar
  52. 52.
    Datta SR, Dudek H, Tao X, et al: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241, 1997PubMedCrossRefGoogle Scholar
  53. 53.
    Jones, R.G., Parsons, M., Bonnard, M., et al. Protein Kinase B (PKB) regulates T lymphocytes survival, Bcl-XLlevels, and NF-xB activationin vivo.J Exp Med 191:1709–1720, 2000CrossRefGoogle Scholar
  54. 54.
    Degermann S, Reilly C, Scott B, Ogata L, von Boehmer H, Lo D: On the various manifestations of spontaneous autoimmune diabetes in rodent models. Eur J Immunol 24:3155–3160, 1994PubMedCrossRefGoogle Scholar
  55. 55.
    Veis DJ, Sentman CL, Bach EA, Korsmeyer SJ: Expression of the bc1–2 protein in murine and human thymocytes and in peripheral T lymphocytes. J Immunol 151:2546–2554, 1993PubMedGoogle Scholar
  56. 56.
    Stambolic V, Suzuki A, de la Pompa JL, et al: Negative regulation of PKB/Aktdependent cell survival by the tumor suppressor PTEN. Cell 95:29–39, 1998PubMedCrossRefGoogle Scholar
  57. 57.
    Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP: Impaired Fas response and autoimmunity in Pten+i’ mice. Science 285:2122–2125, 1999PubMedCrossRefGoogle Scholar
  58. 58.
    Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S: Bc1–2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14:6136–6147, 1995PubMedGoogle Scholar
  59. 59.
    Reap EA, Felix NJ, Wolthuse, A, Kotzin BL, Cohen PL, Eisenberg RA: Bd-2 transgenic Ipr mice show profound enhancement of lymphadenopathy. J Immunol 155:5455–5462, 1995PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kristine M. Garza
    • 1
  • Linh T. Nguyen
    • 1
  • Russell G. Jones
    • 1
  • Pamela S. Ohashi
    • 1
  1. 1.Departments of Medical Biophysics and ImmunologyOntario Cancer InstituteTorontoCanada

Personalised recommendations