Skip to main content

Abstract

Uniform latex particles or microspheres were first used in medical diagnostic applications as “latex” agglutination tests (LAT). Sensitive particle-enhanced turbidimetric assays are still in common use and are read with clinical chemistry analyzers via spectrophotometric or nephelometric methods. Dyed agglutinated particles caught on filters form the basis of another class of tests. Particle capture ELISA tests and assays are in common use (e.g., Abbott’s IMx and AxSym). The popular “strip tests” for pregnancy, ovulation, drugs of abuse in urine, etc. use dyed microspheres, and quantitative strip assays are beginning to appear. Solid phase assays and tests use particles for positive or negative capture of a wide variety of analytes. Solid-liquid separations can be made by centrifugal density separation, or filtration, or via magnetic separation of superparamagnetic particles. Proximity assays, like scintillation proximity assay (SPA), luminescent oxygen channeling immunoassay (LOCI), and fluorescence resonance energy transfer (FRET), all use microspheres. Single microsphere assays are now possible in flow cytometers and on the newer flow-based analysers. Dyed microspheres can be much more sensitive as stains or markers since a single 100 nm microsphere can carry 1000 dye molecules. Molecular biology applications include the Human Genome Project where superparamagnetic and silica microspheres are used to separate DNA from cell debris. Microspheres have been used in immunosensors based on piezoelectrics and evanescent-wave optical fiber-based immunosensors. One new assay system currently being developed uses single beads caught in wells etched in the ends of optical fibers.The hottest new immunological use for microspheres is in homogeneous multiplexed pharmaceutical high-throughput screening assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer, J.M., Plotz, C.M., 1956, The Latex Fixation Test. I. Application to the Serologic Diagnosis of Rheumatoid Arthritis. Am. J. Med. 21: 888.

    Article  Google Scholar 

  2. Price, C.P., Newman, D., 1997, Light-Scattering Immunoassay. In Principles and Practice of Immunoassay (2nd ed.), Stockton Press/Macmillan Reference, NewYork/London, Ch. 18, pp. 443–480.

    Google Scholar 

  3. Indicia corporate press release.

    Google Scholar 

  4. Serres, P.F., August 27, 1991, Indicia (Oullins, France). U.S. Pat. 5,043,289.

    Google Scholar 

  5. Takeuchi, K., Sept. 1992, Scintillation Proximity Assay. Laboratory Practice: (Reprint from Amersham)

    Google Scholar 

  6. Ullman, E.F., Kirakossian, H., Singh, S., Wu, Z.P., Irvin, B.R., Pease, J.S, Switchenko, A.C., Irvine, J.D., Dafforn, A., Skold, C.N., Wagner, D.B., 1994, Luminescent Oxygen Channeling Immunoassay: Measurement of Particle Binding Kinetics by Chemiluminescence. Proc Natl Acad Sci USA 91: 5426–5430.

    Article  CAS  Google Scholar 

  7. Ullman, E.F., et al., 1994, Luminescent Oxygen Channeling Immunoassay (LOCI) for Human Thyroid Stimulating Hormone. In Bioluminescence and Chemiluminescence (A.K. Campbell, LJ. Kricka, & P.E. Stanley, eds.), Wiley & Sons, pp 16–19.

    Google Scholar 

  8. Brinkley, J.M., Haugland, R.P., Singer, V.L., 1994, Fluorescent Microparticles with Controllable Stokes Shift. U.S. Pat. 5,326,692.

    Google Scholar 

  9. Buechler, K., et al., April, 1997, A Fluorescence-Energy-Transfer Detection System for Immunoassays of Biological Samples. Poster at AACC Oak Ridge Conference. To be published in annual “Proceedings of the Twenty–Ninth Annual Oak Ridge Conference on Advanced Analytical Concepts for the Clinical Laboratory”, Clin, Chem., 43/9 or 10.

    Google Scholar 

  10. Buechler, K., et al., April, 1997, Point of Care Immunoassay System. Poster at AACC Oak Ridge Conference. (See ref. above.)

    Google Scholar 

  11. Ikeda, K., et al., U.S. Pat. 5,434,088.

    Google Scholar 

  12. Two new babies on the way, Financial Times (London), Technology Section. July 7, 1988.

    Google Scholar 

  13. Sommer, R.G. (Bayer Corp.), Oct. 29, 1996, Quantitative Detection of Analytes on Immunochromatographic Strips. US Pat. 5,569,608.

    Google Scholar 

  14. Allen, M.P. (Metrika Labs.), Dec. 3, 1996, Disposable Electronic Assay Device. U.S. Pat.5,580,794.

    Google Scholar 

  15. Vaidya, H.C., Porter, S.E., Landt, Y., Silva, D.P., Dietzler, D.N, Ladenson, J.H., 1988,Quantification of Lactate Dehydrogenase-1 in Serum with Use of an M-Subunit- Specific Monoclonal Antibody. Clin. Chem. 34/12: 2410–2414.

    CAS  Google Scholar 

  16. Boom, R., Sol, C.J.A., Salimans, M.M.M, Jansen, C.L., Wertheim-vanDillen, P.M.E., van der Noordaa, 1990, Rapid and Simple Method for Purification of Nucleic Acids. J. Clin.Microbiol. 28/3: 495–503.

    CAS  Google Scholar 

  17. Engelstein, M., Aldredge, T.J., Madan, D., Smith, J.H., Mao, J.I., Smith, D.R., Rice, P.W.,1998, An Efficient, Automatable Template Preparation for High Throughput Sequencing. Microbial & Comparative Genomics 3/4: 237–241.

    CAS  Google Scholar 

  18. Creager, R., Knoll, Shellum, D. Werness, C, 1996, Commercialization of a Chemiluminescence-Based Analyzer. IVD Technology 2/2: 32–38.

    Google Scholar 

  19. Patterson, W., Werness, P., Payne, W.J, Matsson, P., Leflar, C., Melander, T., Quast, S., Stejskal, J., Carlson, A., Macera, M., Schubert, F.W., 1994, Random and Continuous-Access Immunoassays with Chemiluminescent Detection by Access® Automated Analyzer. Clin. Chem. 40/11: 2042–2045.

    CAS  Google Scholar 

  20. Peterson, T., Kapsner, K, Liljander, B, et al., 1992, A Chemilminescent Immunoassay for the Determination of Liver Ferritin. Poster 624 at AACC Meeting: Chicago.

    Google Scholar 

  21. Goldner, H., 1994, ECL Detection Method Speeds Human Genome Mapping Project.R&D Magazine 36/4: 32–33.

    Google Scholar 

  22. McCormick, M., Hammer, B., Nov., 1994, Straight A’sTM mRNA Isolation System: Rapid,High-Quality Poly(A)+ RNA from Diverse Sources. inNOVAtions #2.

    Google Scholar 

  23. Smith, C., Ekenberg, S., McCormick, M, June, 1990, The PolyATtractTM Magnetic mRNA Isolation System: Optimization and Performance. Promega Notes #25, Promega, Madison,WI.

    Google Scholar 

  24. M13 DNA Isolation using SPRI, 26 Jan 97, Whitehead Institute Web Page: www.seq.wi.mit.edu/labprotocols.shtml and especially www-seq.wi.mit.edu/protocols/M13 SPRI.html.

    Google Scholar 

  25. Hokama, Y., 1991, Simplified Solid-Phase Immunobead Assay for Detection of Ciguatoxin and Related Polyethers. J. Clin. Immunoassays 14/2: 111–114.

    Google Scholar 

  26. Triton Technology, Inc., San Diego. Web site: www.physiology.com.

    Google Scholar 

  27. Kowallik, P., Schulz, R., Guth, B.D, Schade, A., Paffhausen, W., Gross, R., Heusch, G.,1991, Measurement of Regional Myocardial Blood Flow with Multiple Colored Microspheres. Circulation 83/3: 974–982.

    Article  CAS  Google Scholar 

  28. Glenny,R., U. of Wash. Website: www.fmrc.pulmcc.washington.edu/fmrc.html. Bulletin board: glenny@pele.pulmcc.washington.edu.

    Google Scholar 

  29. Elings, V.B., Nicoli, D.F., Briggs, J., 1981, Fluorescence Fluctuation Immunoassay. Meth.Enzymol. 92: 458–472.

    Article  Google Scholar 

  30. Saunders, G.C, Jett, J.H, Martin, J.C., 1985, Amplified Flow Cytometric Separation FreeFluorescence Immunoassays. Clin. Chem.31:2020–2023.

    CAS  Google Scholar 

  31. Cook, L., Irving, D., 1989, Microsphere-Based Flow Cytometric Assays. J. Clin. Immunoassay 12/1: 36–39.

    Google Scholar 

  32. McHugh, T.M., 1991, Flow Cytometry and the Application of Microsphere-Based Fluorescence Immunoassays. Immunochemica 5/1: 1–6. Zymed Labs., Inc.

    Google Scholar 

  33. Kwittken, P.L., Pawlowski, N.A., Sweinberg, S.K., Douglas, S.D., Campbell, D.E., 1994, Flow Cytometric Measurement of Immunoglobulin E to Natural Latex Proteins. Clin. & Diag. Lab. Immunology 1/2: 197–201.

    CAS  Google Scholar 

  34. Fulton, R.J., McDade, R.L., Smith, P.L, Kienker, L.J, Kettman, J.R., 1997, Advanced Multiplexed Analysis with the FlowMetrixTM System. Clin. Chem. 43/9: 1749–1756.

    CAS  Google Scholar 

  35. McDade, R.L., Fulton, R.J., April, 1997, True Multiplexed Analysis by Computer-Enhanced Flow Cytometry, Medical Device & Diagnostic Industry.

    Google Scholar 

  36. McDade, R.L, Luminex (Austin, TX); Web: www.devicelink.com/mddi

    Google Scholar 

  37. Nolan, J.P., Lauer, S, Prossnitz, E.R., Sklar, L.A, 1999, Flow Cytometry: A Versatile Tool for All Phases of Drug Discovery. Drug Discovery Today 4/4: 173–180.

    Article  CAS  Google Scholar 

  38. Swartzman, E.E, Michelotti, J.M., Evangelista, L.T., Yuan, P.M.. Miraglia, S.J., September, 13–16, 1999, Multiplexed and Homogeneous Bead-Based Immunoassays for High Throughput Screening Using Fluorometric Microvolume Assay Technology (FMATTM). Poster at Soc. for Biomolecular Screening 5th Annual Meeting in Edinburgh, Scotland. (PE Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404)

    Google Scholar 

  39. Blenkinsop, P.T., Cassells, J.M, Disley, D.M, September, 13–16, 1999, Acumen - A Fluorescence-Based Laser Scanning System Combining Sub-Micron Feature Resolution with Ultra-Fast data Acquisition and Analysis. Exhibitor Tutorial at Soc. for Biomolecular Screening 5th Annual Meeting in Edinburgh, Scotland.

    Google Scholar 

  40. Morgan, C.L., Newman, D.J, Price, C.P., 1996, Immunosensors: technology and opportunities in laboratory medicine. Clin. Chem. 42/2: 193–209.

    CAS  Google Scholar 

  41. König, B., Grätzel, M, 1994, A Novel Immunosensor for Herpes Viruses. Anal. Chem. 66: 341–344.

    Article  Google Scholar 

  42. B.König, M.Grätzel , 1986, Anal. Chim. Acta 188: 257.

    Article  Google Scholar 

  43. Muratsugu, M., Kurosawa, S., Kamo, N., 1992, Detection of Antistreptolysin O Antibody: Application of an Initial Rate Method of Latex Piezoelectric Immunoassay. Anal. Chem.64/27: 2483–2487.

    Article  CAS  Google Scholar 

  44. Kurosawa, S., Kamo, N., Arimura, T., Sekiya, A., Muratsugu, M, March 24-28, 1996, Development and Applications of Latex Piezoelectric Immunoassay. Preprint: Extended Abstract for Amer. Chem. Soc. Div. of Envir. Chem. meeting.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bangs, L.B. (2000). Recent Uses of Microspheres in Diagnostic Tests and Assays. In: Liron, Z., Bromberg, A., Fisher, M. (eds) Novel Approaches in Biosensors and Rapid Diagnostic Assays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1231-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1231-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5452-9

  • Online ISBN: 978-1-4615-1231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics