Skip to main content

The Application of Biorecognition

  • Chapter
  • 202 Accesses

Abstract

This chapter presents some reflections on biorecognition and describes its use in biosensors and affinity techniques, such as affinity chromatography, immunoaffinity chromatography, (photo)affinity labeling, affinity cross-linking, and affinity therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss, A., and Schlessinger, J., 1998, Switching signals on and off by receptor dimerization,Cell 94, 277–280.

    Article  CAS  Google Scholar 

  2. Cuatrecasas, P, Wilchek, M., and Anfinsen, C.B., 1968, Selective enzyme purification by affinity chromatography,Proc. Natl Acad. Sci. USA 61, 636–643.

    Article  CAS  Google Scholar 

  3. Wilchek, M., 1984, Affinity labeling: from nuclease to cells. InThe Impact of Protein Chemistry on Biomedical Sciences(A.N. Schechter, R.F. Goldberger and A. Dean, eds.), Academic Press, Orlando, pp. 91–105.

    Google Scholar 

  4. Wilchek, M., 1988, Affinity therapy: immunotoxins, “guided missiles”“magic bullets”, “smart bombs”, etc.. InNew Methods in Drug Research(A. Makryiannis, ed.), Vol.2, Prous Science Publishers, Barcelona, pp. 175–193.

    Google Scholar 

  5. Bayer, E.A., Wilchek, M., and Skutelsky, E., 1976, Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex,FEBS Lett. 68, 240–244.

    Article  CAS  Google Scholar 

  6. Wilchek, M., and Bayer, E.A., 1988, The avidin-biotin complex in bioanalytical applications,Anal. Biochem.171, 1–32.

    Article  CAS  Google Scholar 

  7. Chaiet, L, Miller, T.W., Tausig, F., and Wolf, F.J., 1963, Antibiotic MSD-235, II. Separation and purification of synergistic compounds,Antimicrob. Agents Chemother. 3,28–32.

    Google Scholar 

  8. Wilchek, M., and Bayer, E.A., 1989, Avidin-biotin technology ten years on: has it lived up to its expectations?,Trends Biochem.Sci.14, 408–412.

    Article  CAS  Google Scholar 

  9. Kurzban, G.P, Gitlin, G., Bayer, E.A., Wilchek, M., and Horowitz, P.M., 1989, Shielding of tryptophan residues of avidin by the binding of biotin,Biochemistry 28, 8537–8542.

    Article  CAS  Google Scholar 

  10. Livnah, 0., Bayer, E.A., Wilchek, M., and Sussman, J., 1993, Three-dimenional structures of avidin and the avidin-biotin complex,Proc. Natl. Acad. Sci. USA 90, 5076–5080.

    Article  CAS  Google Scholar 

  11. Jeffrey, P.D., Strong, R.K., Sieker, L.C., Chang, C.Y.Y., Campbell, R.L., Petsko, G.A., Haber, E., Margolies, M.N., and Sheriff, S., 1993, 26-10 Fab-digoxin complex: affinity and specificity due to surface complementarity,Proc. Natl Acad. Sci. USA 90, 10310–10314.

    Article  CAS  Google Scholar 

  12. Arevalo, J.H., Hassig, C.A., Stura, E.A., Sims, M.J., Taussig, M.J., and Wilson, I.A., 1994, Structural analysis of antibody specificity - detailed comparison of five Fab-steroid complexes,J. Mol Biol 241, 663–690.

    Article  CAS  Google Scholar 

  13. Wilson, I.A, and Stanfield, R.L, 1994, Antibody-antigen interactions: new structures and new conformational changes,Curr. Opin. Struct. Biol. 4, 857–867.

    Article  CAS  Google Scholar 

  14. Koshland, D.K., 1994, The key-lock theory and the induced fit theory,Angew. Chem. Int. Ed. Engl. 33, 2375–2378.

    Article  Google Scholar 

  15. Ramström, O., Ye, L., and Mosbach, K., 1996, Artificial antibodies to corticosteroids prepared by molecular imprinting,Chem. & Biol. 3, 471–477.

    Article  Google Scholar 

  16. Wulff, G., 1995, Molecular imprinting in cross-linked materials with the aid of molecular templates -a way towards artificial antibodies,Angew. Chem. Int. Ed. Engl. 34, 1812–1832.

    Article  CAS  Google Scholar 

  17. Wulff, G, Gross, T., and Schönfeld, R., Enzyme models based on molecularly imprinted polymers with stron esterase activity,Angew. Chem. Int. Ed. Engl. 36,1961–1964.

    Google Scholar 

  18. Wilchek, M., Miron, T., and Kohn, J., 1984, Affinity chromatography,Methods Enzymol. 104, 3–56.

    Article  CAS  Google Scholar 

  19. Cuatrecasas, P., and Wilchek, M., 1968, Single-step purification of avidin from egg whiteby affinity chromatography on biocytin-Sepharose columns,Biochem. Biophys. Res. Commun.33, 235–239.

    Article  CAS  Google Scholar 

  20. Wilchek, M., and Miron, T., 1999, Thirty years of affinity chromatography,React. Funct. Polymers 41, 263–268.

    Article  CAS  Google Scholar 

  21. Ernst-Cabrera, K, and Wilchek, M., 1988, Immunoaffinity chromatography and its application for the purification of pharmaceutically active proteins,Med. Sci. Res. 16, 305–310.

    CAS  Google Scholar 

  22. Hofstetter, O., Hofstetter, H., Schurig, V., Wilchek, M., and Green B.S., 1998, Antibodies can recognize the chiral center of free a-amino acids,J. Am. Chem. Soc. 120, 3251–3252.

    Article  CAS  Google Scholar 

  23. Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green B.S., in press, Production and applications of antibodies directed against the chiral center of a-amino

    Google Scholar 

  24. Diamandis, E.P., and Christopoulos, T.K, 1996, Immunoassay, Academic Press, San Diego.

    Google Scholar 

  25. Ford, C.F., Suominen, I., and Glatz, C.E., 1991, Fusion-tails for the recovery and purification of recombinant proteins,Protein Expr. Purif. 2, 95–107.

    Article  CAS  Google Scholar 

  26. Nilsson, J., Ståhl, S., Lundeberg, I, Uhlén, M., and Nygren, P.-A., 1997, Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins,Protein Expr. Purif 11, 1–16.

    Article  CAS  Google Scholar 

  27. Porath, J., 1992, Immobilized metal ion affinity chromatography,Protein Expr. Purif. 3, 263–281.

    Article  CAS  Google Scholar 

  28. Zwick, M.B., Shen, J., and Scott, J.K., 1998, Phage-displayed peptide libraries,Curr. Opin. Biotechnol 9, 427–436.

    Article  CAS  Google Scholar 

  29. Lowe, C.R., 1999, Chemoselective biosensors,Curr. Opin. Chem. Biol 3, 106–111.

    Article  CAS  Google Scholar 

  30. Marose, S., Lindemann., C., Ulber, R., and Scheper, T., 1999, Optical sensor systems for bioprocess monitoring,Trends Biotechnol 17, 30–34.

    Article  CAS  Google Scholar 

  31. Johnsson, B., Lofas, S., and Lindquist, G., 1991, Immobilization of proteins to a carboyxmethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,Anal. Biochem. 198, 268–277.

    Article  CAS  Google Scholar 

  32. Jonsson, B., Fagerstam, L., Iversson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S. Persson, B., Roos, H., and Ronnenberg, 1, 1991, Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,Biotechniques 11, 620–627.

    CAS  Google Scholar 

  33. O’Shannessy, D.J., Brigham-Burke, M., and Peck, K., 1992, Immobilization chemistries suitable for the use in the BIAcore srface plasmon resonance detector,Anal. Biochem.205, 132–136.

    Article  Google Scholar 

  34. Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green B.S., 1999, Chiral discrimination using an immunosensor,Nature Biotechnol. 17, 371–374.

    Article  CAS  Google Scholar 

  35. Colman, R.F., 1997, Affinity labeling. InProtein Function: A Practical Approach, 2nd edition (T.E. Creighton, ed.), Oxford University Press, Oxford, pp. 155–183.

    Google Scholar 

  36. Jakoby, W.B., and Wilchek, M., 1977, Affinity labeling.Methods Enzymol. 46, Academic Press, San Diego.

    Google Scholar 

  37. Morpurgo, M., Hofstetter, H, Bayer, E.A., and Wilchek, M., 1999, A chemical approach to illustrate the principle of signal transduction cascades using the avidin-biotin system,J. Am. Chem. Soc. 120, 12734–12739.

    Article  Google Scholar 

  38. Hermanson, G.T., 1996, Bioconjugate Techniques, Academic Press, San Diego.

    Google Scholar 

  39. Pietersz, G., Rowland, A., Smyth, M.J, and McKenzie I.F.C, 1994, Chemoimmunoconjugates for the treatment of cancer,Advan. Immunol. 56, 301–387.

    Article  CAS  Google Scholar 

  40. Ríhová, B., 1997, Targeting of drugs to cell surface receptors,Crit. Rev, Biotechnol. 17, 149–169.

    Article  Google Scholar 

  41. Schechter, B., Arnon, R., Colas, C, Burakova, T., and Wilchek, M., 1995, Renal accumulation of streptavidin: potential use for targeted therapy to the kidney,Kidney International 47, 1327–1335.

    Article  CAS  Google Scholar 

  42. Schechter, B., Chen, L., Arnon, R, and Wilchek, M., 1999, Organ selective delivery using a tissue-directed streptavidin-biotin system: targeting 5-fluorouridine via TNP-streptavidin,Drug Target.6, 337–348.

    Article  CAS  Google Scholar 

  43. Arnon, R, Schechter, B., and Wilchek, M., 1985, Monoclonal antibodies for immunotargeting of drugs in cancer cells. InMonoclonal antibodies and cancer therapy, Alan R. Liss Inc., pp. 243–256.

    Google Scholar 

  44. Schechter, B., Arnon, R., Wilchek, M., Schlessinger, J., Hurwitz, E., Aboud-Pirak, E., and Sela, M., 1991, Indirect immunotargeting of cis-Pt to human epidermoid carcinoma KB using the avidin-biotin system,Int. J. Cancer 48, 167–172.

    Article  CAS  Google Scholar 

  45. Hurwitz, E., Klapper, L.N., Wilchek, M., Yarden, Y., and Sela, M., in press, Inhibition of tumor growth by conjugates of polyethylene glycol with anti-ErbB2 antibodies,Cancer Immunol. Immunother..

    Google Scholar 

  46. Wilchek, M., and Bayer, E.A., 1990, Avidin-biotin technology.Methods Enzymol.184, Academic Press, San Diego.

    Google Scholar 

  47. Paganelli, G., Grana, C., Chinol, M., Cremosi, M., DeCicco, C., De Brand, F., Robertson, C., Zurida, S., Casadio, C., Zoboli, S., Sicchardi, A.G., and Veronesi, U., 1999, Antibody guided three-step therapy for high grade glioma with yttrium-90 biotin,Eur. J. Nucl. Med. 26, 348–357.

    Article  CAS  Google Scholar 

  48. Marshall, A., and Hodgson, J., 1998, DNA chips: An array of possibilities,Nature Biotechnol. 16, 27–31.

    Article  CAS  Google Scholar 

  49. Ramsay, G., 1998, DNA chips: State of the art,Nature Biotechnol 16, 40–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilchek, M., Hofstetter, H., Hofstetter, O. (2000). The Application of Biorecognition. In: Liron, Z., Bromberg, A., Fisher, M. (eds) Novel Approaches in Biosensors and Rapid Diagnostic Assays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1231-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1231-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5452-9

  • Online ISBN: 978-1-4615-1231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics