Niche Construction and Gene-Culture Coevolution: An Evolutionary Basis for the Human Sciences

  • F. John Odling-Smee
  • Kevin N. Laland
  • Marcus W. Feldman
Part of the Perspectives in Ethology book series (PEIE, volume 13)

Abstract

Traditionally evolutionary theory treats the adaptations of organisms as consequences of a process whereby natural selection moulds organisms to fit pre-established environments. The changes that organisms themselves cause in their own environments are seldom through to be evolutionarily significant. However, active organisms partly create their own selective environments by “niche construction,” and ancestral organisms can pass on legacies of modified natural selection pressures in their environments to their descendants. In this chapter, we build on conventional evolutionary theory by adding niche construction. We argue that the resulting enhanced theory of evolution provides a better basis for understanding how human cultural processes interact with human genetic processes in human evolution, and we discuss how human cultural niche construction may have co-directed, and may still be co-directing, human genetic evolution.

Keywords

Mold Ozone Anemia Sewage Malaria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, L. C., &Wheeler, P. (1995). The expensive-tissue hypothesis. Current Anthropology, 36(2), 199–221.CrossRefGoogle Scholar
  2. Aoki, K., &Feldman, M. W. (1987). Toward a theory for the evolution of cultural communication: Coevolution of signal transmission and reception. Proceedings of the National Academy of Sciences of the United States of America, 84,7164–7168.PubMedCrossRefGoogle Scholar
  3. Bodmer, W. F., &Cavalli-Sforza, L. L. (1976). Genetics, evolution and man. San Francisco, CA: Freeman.Google Scholar
  4. Boyd, R., &Richerson, P. J. (1985). Culture and the evolutionary process. Chicago, IL: University of Chicago Press.Google Scholar
  5. Boyd, R., & Richerson, P. J. (1995). Why does culture increase human adaptability? Ethology and Sociobiology, 16,125–141.CrossRefGoogle Scholar
  6. Boyd, R., & Richerson, P. J. (1996). Why culture is common but cultural evolution is rare. In W. G. Runciman, J. Maynard Smith, &R. I. M. Dunbar (Eds.), Evolution of social behaviour patterns in primates and man (pp. 77–93). Oxford: Oxford University Press.Google Scholar
  7. Burian, R. M. (1992). Adaptation: Historical perspectives. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 7-12). Cambridge, MA: Harvard University Press.Google Scholar
  8. Cavalli-Sforza, L. L., &Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton, NJ: Princeton University Press.Google Scholar
  9. Cavalli-Sforza, L. L., &Feldman, M. W. (1983). Cultural versus genetic adaptation: A quantitative approach. Princeton, NJ: Princeton University Press.Google Scholar
  10. Cody, M. L. (1981). Habitat selection in birds. Orlando, FL: Academic Press.Google Scholar
  11. Cowley, D. E., &Atchley, W. R. (1992). Quantitative genetic models for development, epigenetic selection, and phenotypic evolution. Evolution, 46, 495–518.CrossRefGoogle Scholar
  12. Darwin, C. (1881). The formation of vegetable mold through the action of worms, with observations on their habits. London: Murray.Google Scholar
  13. Davies, N. B., Kilner, R. M., & Noble, D. G. (1998). Nestling cuckoos, Culculus canorus, exploit hosts with begging calls that mimic a brood. Philosophical Transactions of the Royal Society of London, B265, 673–678.Google Scholar
  14. Dawkins, R. (1982). The extended phenotype. Oxford: Freeman.Google Scholar
  15. Dawkins, R. (1989). The selfish gene (2nd ed.). Oxford: Oxford University Press.Google Scholar
  16. Durham, W. H. (1991). Coevolution: Genes, culture and human diversity. Stanford, CA: Stand-ford University Press.Google Scholar
  17. Edmunds, M. (1974). Defense in animals. New York: Longman.Google Scholar
  18. Endler, J. A. (1988). Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London, B319, 515–523.Google Scholar
  19. Feldman, M. W., & Cavalli-Sforza, L. L. (1976). Cultural and biological evolutionary processes: Selection for a trait under complex transmission. Theoretical Population Biology, 9, 238–259.PubMedCrossRefGoogle Scholar
  20. Feldman, M. W., & Cavalli-Sforza, L. L. (1989). On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem. In M. W. Feldman (Ed.), Mathematical Evolutionary Theory (pp. 145–173). Princeton, NJ: Princeton University Press.Google Scholar
  21. Feldman, M. W., & Laland, K. N. (1996). Gene-culture coevolutionary theory. Trends in Ecology & Evolution, 11,453–457.CrossRefGoogle Scholar
  22. Fisher, J., & Hinde, R. A. (1949). The opening of milk bottles by birds. British Birds, 42,347–357.Google Scholar
  23. Futuyma, D. J., & Slatkin, M. (1983). Coevolution. Sunderland, MA: Sinauer.Google Scholar
  24. Gurney, W. S. C., & Lawton, J. H. (1996). The population dynamics of ecosystem engineers. Oikos, 76, 273–283.CrossRefGoogle Scholar
  25. Hanney, P. W. (1975). Rodents: Their lives and habits. North Vancouver, Canada: Douglas David & Charles.Google Scholar
  26. Jaenicke, J., & Holt, R. D. (1991). Genetic variation for habitat preference: evidence and explanations. American Naturalist, 757(Suppl.), S67–S90.Google Scholar
  27. Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
  28. Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78,183–194.Google Scholar
  29. Kirkpatrick, M., & Lande, R. (1989). The evolution of maternal characters. Evolution, 43(3), 485–503.CrossRefGoogle Scholar
  30. Krebs, J. R., & Davies, N. B. (1993). An introduction to behavioural ecology (3rd ed.). Oxford, England: Blackwell.Google Scholar
  31. Kumm, X, Laland, K. N., & Feldman, M. W. (1994). Gene-culture coevolution and sex ratios: The effects of infanticide, sex-selective abortion, sex selection, and sex-biased parental investment on the evolution of sex ratios. Theoretical Population Biology, 46(3), 249–278.CrossRefGoogle Scholar
  32. Laland, K. N, Kumm, J., & Feldman, M. W. (1995). Gene-culture coevolutionary theory: A test case. Current Anthropology, 36(2), 131–156.CrossRefGoogle Scholar
  33. Laland, K. N., Odling-Smee, F. X, & Feldman, M. W. (1996). On the evolutionary consequences of niche construction. Journal of Evolutionary Biology, 9, 293–316.CrossRefGoogle Scholar
  34. Laland, K. N, Odling-Smee, F. X, & Feldman, M. W. (in press.). Niche construction, biological evolution and cultural change.Behavioral and Brain Sciences.Google Scholar
  35. Lee, K. E. (1985). Earthworms: Their ecology and relation with soil and land use. London: Academic Press.Google Scholar
  36. Lewontin, R. C. (1983). Gene, organism, and environment. In D. S. Bendall (Ed.),Evolution from molecules to men (pp. 273–285). Cambridge University Press.Google Scholar
  37. Lumsden, C. I, & Wilson, E. O. (1981). Genes, mind and culture. Cambridge, MA: Harvard University Press.Google Scholar
  38. Odling-Smee, F. J. (1988). Niche constructing phenotypes. In H. C. Plotkin (Ed.), The role of behavior in evolution (pp. 73–132). Cambridge, MA: MIT Press.Google Scholar
  39. Odling-Smee, F. J. (1994). Niche construction, evolution and culture. In T. Ingold (Ed.), Companion encyclopedia of anthropology (pp. 162–196). London: Routledge.Google Scholar
  40. Odling-Smee, F. J. (1996). Niche construction, genetic evolution and cultural change. Behavioural Processes, 35,195–205.CrossRefGoogle Scholar
  41. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. American Naturalist, 147(4), 641–648.Google Scholar
  42. Robertson, D. S. (1991). Feedback theory and Darwinian evolution. Journal of Theoretical Biology, 152,469–484.PubMedCrossRefGoogle Scholar
  43. Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: Free Press.Google Scholar
  44. Rosenweig, M. L. (1987). Habitat selection and evolutionary processes. Evolutionary Ecology, 1(4), 283–407.Google Scholar
  45. Rothenbuhler, W. C. (1964). Behavior genetics of nest cleaning in honey bees. IV. Responses of Fl and backcross generations to disease-killed brood. American Zoologist, 4, 111–123.PubMedGoogle Scholar
  46. Sherratt, A. (1997). Climatic cycles and behavioural revolutions: the emergence of modern humans and the beginning of farming. Antiquity, 71, 271–287.Google Scholar
  47. Sherry, D. F., &Galef, B. G, Jr. (1984). Cultural transmission without imitation-milk bottle opening by birds. Animal Behaviour, 32, 937–938.CrossRefGoogle Scholar
  48. Slatkin, M. (1979a). The evolutionary response to frequency- and density-dependent interactions. American Naturalist, 114(3), 384–398.Google Scholar
  49. Slatkin, M. (1979b). Frequency- and density-dependent selection in a quantitative character. Genetics, 93,755–771.PubMedGoogle Scholar
  50. Soltis, J., Boyd, R., & Richerson, P. X (1995). Can group-functional behaviors evolve by cultural group selection? Current Anthropology, 36, 473–494.CrossRefGoogle Scholar
  51. Thompson, X N. (1994). The coevolutionary process. Chicago, IL: University of Chicago Press.Google Scholar
  52. Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1,1–30.Google Scholar
  53. Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • F. John Odling-Smee
    • 1
  • Kevin N. Laland
    • 2
  • Marcus W. Feldman
    • 3
  1. 1.Institute of Biological AnthropologyUniversity of OxfordOxfordUK
  2. 2.Sub-Department of Animal BehaviourUniversity of CambridgeMadingleyUK
  3. 3.Department of Biological Sciences Herrin HallStanford University StanfordUSA

Personalised recommendations