Advertisement

Evolution, Radiations, and Extinctions in Proterozoic to Mid-Paleozoic Reefs

  • Paul Copper
Part of the Topics in Geobiology book series (TGBI, volume 17)

Abstract

Reefs have an immensely long fossil record: those built by prokaryotes (Eubacteria and Archaea) have been with us for over 3 billion years, at a time when the atmosphere was enormously enriched in CO2 (possibly as much as the 95–98% CO2 atmospheres of the nearest planets Mars and Venus) and virtually devoid of oxygen. Skeletal reefs built by single-celled or multicellular CaCO3 prokaryotes and simple eukaryotes (i.e., calcimicrobes) have been here since the Late Proterozoic (ca 1 billion-700 million years ago), and metazoan reefs, built by multicellular animals often in conjunction with calcimicrobes, have been here for the last half billion (ca 530 million years ago: Fig. 1). In the 180 million year time interval spanning the appearance of the first metazoan-calcimicrobe reef consortium of the Early Cambrian to the close of the Middle Paleozoic (Devonian) tropical reef ecosystem, with abundant corals and other biota, metazoan reefs survived three global mass extinctions, each of which at least temporarily reset their ecological and in part evolutionary “clocks.” Moreover, by the close of the Devonian, land areas adjacent to reefs were occupied by tropical pteridophyte rainforests, pumping up atmospheric levels of oxygen to near-modern levels, adding another dimension to coastal erosion, sediment supply, and fluctuating greenhouse to icehouse climates, thus providing new controls and new settings for reef growth.

Keywords

Mass Extinction Lower Cambrian Late Ordovician Tabulate Coral Sponge Reef 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, J. D, 1989, Giant “algal” reefs, middle-upper Proterozoic Little Dal group (770–120 Ma), Mackenzie Mountains, N.W.T., Canada, Can. Soc. Petrol. Geol. Memoir 13:13–23.Google Scholar
  2. Awramik, S. M. 1971, Precambrian columnar stromatolite diversity, Science 174:825–827.Google Scholar
  3. Bambach, R. K, 1993, Seafood through time; changes in biomass, energetics, and productivity in the marine ecosystem, Paleobiology 19:372–397.Google Scholar
  4. Bengtson, S., 1992, Proterozoic and earliest Cambrian skeletal metazoans, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 397–411.Google Scholar
  5. Bengtson, S., 1994, The advent of animal skeletons, in: Early Life on Earth, Nobel Symposium No. 84 (S. Bengtson, ed.), Columbia University Press, New York, pp. 412–425.Google Scholar
  6. Bengtson, S. 1998, Animal embryos in deep time, Nature 391:529–530.Google Scholar
  7. Bengtson, S., and Conway Morris, S. 1992, Early radiation of biomineralizing phyla, in: Origin and Early Evolution of the Metazoa, Topics in Geobiology, Vol. 10 (J. H. Lipps and P. W. Signor, eds), Plenum Press, New York, pp. 448–482.Google Scholar
  8. Bengtson, S., and Runnegar, B. N., 1992, Origins of biomineralization in metaphytes and metazoans, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 447–452.Google Scholar
  9. Bengtson, S., and Zhao, Y., 1997, Fossilized metazoan embryos from the earliest Cambrian, Science 277:1645–1648.Google Scholar
  10. Berner, R. A., 1994, Geocarb II, a revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci. 294:56–91.Google Scholar
  11. Berner, R. A., 1998, The carbon cycle and CO2 over Phanerozoic time. The role of land plants, Royal Soc. Philosoph. Trans. B353:75–82.Google Scholar
  12. Berner, R. A., 1999, Atmospheric oxygen over Phanerozoic time, Proc. Nat. Acad. Sci. 96:10955–10957.Google Scholar
  13. Berry, W. B. N., and Boucot, A. J., 1973, Glacio-eustatic control of Late Ordovician—Early Silurian platform sedimentation and faunal changes, Bull. Geol. Soc. Am. 84:275–284.Google Scholar
  14. Beutinger, B. W., 1996, Mikro-fazielle und paläökologische Untersuchung des ober-ordovizischen Boda-Kalkes, Siljan Gebiet (Sweden), Diplomarbeit Universität Stuttgart, Stuttgart.Google Scholar
  15. Blanchon, P., and Jones, B., 1997, Hurricane control on shelf-edge reef architecture around Grand Cayman, Sedimentology 44:479–506.Google Scholar
  16. Bosence, D. W. J., and Bridges, P. H., 1995, A review of the origin and evolution of carbonate mud-mounds, in: Carbonate Mud-mounds: Their origin and evolution (C. L. V. Monty, D.W. J. Bosence, P. H. Bridges, and B. R. Pratt, eds.), Special Publications International Association Sedimentologists, Vol. 23, Blackwell, Oxford, United Kingdom, pp. 3–9.Google Scholar
  17. Brenchley, P. J., Carden, G. A. F., and Marshall, J. D., 1995, Environmental changes associated with the “first strike” of the Late Ordovician mass extinction, Mod. Geol. 20:69–82.Google Scholar
  18. Brunton, F. R., and Dixon, O. A., 1994, Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors, Palaios 9: 370–387.Google Scholar
  19. Brunton, F. R., Smith, L., Dixon, O. A., Copper, P., Nestor, H., and Kershaw, S., 1998, Silurian reef episodes, changing seascapes and paleobiogeography, NY State Museum Bull. 491:265–282.Google Scholar
  20. Buddemeier, R. W., 1997, Making light work of adaptation, Nature 388:229–230.Google Scholar
  21. Buddemeier, R. W., and Fautin, D. G., 1996, Global CO2 and evolution among the Scleractinia, Bull. Instit. Oceanogr. Monaco (Numéro Spéc.) 14:33–38.Google Scholar
  22. Butterfield, N. J., and Rainbird, R. H., 1998, Diverse organic-walled fossils including “possible dinoflagellates” from the Early Neoproterozoic of arctic Canada, Geology 26:963–966.Google Scholar
  23. Cañas, F., 1995, Early Ordovician carbonate platform facies of the Argentine Precordillera: Restricted shelf to open platform evolution, in: Ordovician Odyssey (J. D. Cooper, M. L. Droser, and S. C. Finney, eds.), SEPM, Riverside, CA, pp. 221–224.Google Scholar
  24. Cañas, F., and Keller, M., 1993, Arrecifes y monticulos arrecifales en la Formación San Juan (Precordillera Sanjuanina, Argentina): Los arrecifes más antiguas de Sudámerica. Bol. Real Soc. Española Hist. Nat. 88:127–136.Google Scholar
  25. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J., 1997, Trichodesmium, a globally significant marine cyanobacterium, Science 276: 1221–1227.Google Scholar
  26. Carey, D. A., 1987, Sedimentological effects and palaeoecological implications of the tube-building polychaete Lanice conchilega Pallas, Sedimentology 34:49–66.Google Scholar
  27. Conway Morris, S., 1993, The fossil record and the early evolution of the Metazoa, Nature 361:219–225.Google Scholar
  28. Copper, P., 1974, Structure and development of Early Paleozoic reefs, Proc. Second Int. Symp. Coral Reefs 1:365–386.Google Scholar
  29. Copper, P., 1981, Spirapora, a new Late Ordovician tabulate coral from Manitoulin Island, Ontario, Canada, J. Paleontol. 55:1071–1075.Google Scholar
  30. Copper, P., 1989, Upper Ordovician and Lower Silurian reefs from Anticosti Island, Quebec, Can. Soc. Petrol. Geol. Memoir 13: 271–276.Google Scholar
  31. Copper, P., 1994a, Ancient reef ecosystem expansion and collapse, Coral Reefs 13:3–11.Google Scholar
  32. Copper, P., 1994b, Reefs under stress: The fossil record, Courier Forschungsinstitut Senckenberg 172:87–94.Google Scholar
  33. Copper, P., 1997, Reefs and carbonate productivity: Cambrian through Devonian, Proc. 8th Int. Coral Reef Symp., Panama 2:1623–1630.Google Scholar
  34. Copper, P., 1998, Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas, Palaeontolog. Polonica 43:137–154.Google Scholar
  35. Copper, P., 1999, Brachiopods during and after the Late Ordovician mass extinctions on Anticosti Island, E Canada, Acta Universitatis Carolinae—Geologica 43:207–209.Google Scholar
  36. Copper, P. (in press), Silurian and Devonian Reefs: 80 My of Global Greenhouse between Two Ice Ages, SEPM Special Paper, Riverside, CA.Google Scholar
  37. Copper, P., and Brunton, F. R., 1991, A global review of Silurian reefs, Spec. Papers Palaeontol. 44:225–259.Google Scholar
  38. Copper, P., and Jin, J. S. (eds.), 1996, Brachiopods, Balkema Press, Rotterdam.Google Scholar
  39. Crimes, T. P., 1992, The record of trace fossils across the Proterozoic-Cambrian boundary, in: Origin and Early Evolution of the Metazoa (J. H. Lipps, and P. W. Signor, eds.), Plenum Press, New York, pp. 177–202.Google Scholar
  40. Debrenne, F., 1992, Diversification of Archeocyatha, in: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, eds.), Plenum Press, New York, pp. 425–443.Google Scholar
  41. Debrenne, F., and Courjault-Radé, P., 1994, Répartition paléogeographique des archéocyathes et délimitation des zones intertropicales au Cambrien inférieur, Bull. Soc. Géol. France 165:459–467.Google Scholar
  42. Debrenne, F., and Zhuravlev, A., 1997, Cambrian food web: A brief review, Geobios Monogr. Spéc. 20:181–188.Google Scholar
  43. De Freitas, T. A., and Dixon, O. A., 1995, Silurian microbial buildups of the Canadian Arctic, Spec. Publ. Int. Sedimentol. Assoc. 23:151–169.Google Scholar
  44. De Freitas, T. A., and Mayer, U., 1995, Kilometre-scale buildups in a rimmed carbonate platform succession, arctic Canada: New insight on Lower Ordovician reef facies, Bull. Can. Petrol. Geol. 43:407–432.Google Scholar
  45. De Freitas, T. A., Dixon, O. A., and Mayer, U., 1993, Silurian pinnacle reefs of the Canadian arctic, Palaios 8:172–182.Google Scholar
  46. De Freitas, T. A., Trettin, H. P., Dixan, O. A., and Mallamo, M., 1999, Silurian system of the Arctic Archipelago, Bull. Can. Petrol. Geol. 47:136–193.Google Scholar
  47. Doolittle, W. F., 1998, A paradigm gets shifty, Nature 392:15–16.Google Scholar
  48. Doolittle, W. F., Feng, D. F., Tsang, S., Cho, G., and Little, E., 1996, Determining divergence times of the major kingdoms of living organisms with a protein clock, Science 271:470–477.Google Scholar
  49. Droser, M. L., and Sheehan, P. M., 1997, Paleoecology of the Ordovician radiation: Resolution of large scale patterns with individual case histories, paleogeography and environments, Geobios Mém. Spéc. 20:221–229.Google Scholar
  50. Droser, M. L., Fortey, R. A., and Li, X., 1996, The Ordovician radiation, Am. Sci. 84:122–131.Google Scholar
  51. Eder, W., and Franke, W., 1982, Death of Devonian reefs, Neues Jahrbuch Geol Palaontol Abhandlungen 163:241–243.Google Scholar
  52. Ekdale, A. A., and Lewis, D. W., 1993, Sabellariid reefs in Ruby Bay, New Zealand, Palaios 8:614–620.Google Scholar
  53. Fagerstrom, J. A., 1987, The Evolution of Reef Communities, Wiley Interscience, New York.Google Scholar
  54. Fedonkin, M. A., 1992, Vendian faunas and the early evolution of Metazoa, in: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, eds.), Plenum Press, New York, pp. 87–129.Google Scholar
  55. Flügel, E. (ed.), 1996, Global and regional controls on biogenic sedimentation, 1, Reef evolution, Göttinger Arbeiten Geol. Paläontol. Sb2:1–428.Google Scholar
  56. Fuhrman, J. A., McCallum, K., and Davis, A. A., 1992, Novel marine archaebacterial group from marine plankton, Nature 356:148–150.Google Scholar
  57. Gao, J. G., and Copper, P., 1997, Growth rates of Middle Paleozoic corals and sponges: early Silurian of eastern Canada, Proc. 8th Int. Coral Reef Symp. 2:1651–1656.Google Scholar
  58. Garrett, P., 1970, Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals, Science 169:171–173.Google Scholar
  59. Gehling, J. G., and Rigby, J. K., 1996, Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia, J. Paleontol. 70:185–195.Google Scholar
  60. Germs, G. J. B., 1972, New shelly fossils from the Nama group, Southwest Africa, Am. J. Sci. 272:752–761.Google Scholar
  61. Ginsburg, R. N., and Lowenstam, H. A., 1958, The influence of marine bottom communities on the depositional environment of sediments, J. Geol. 66:310–318.Google Scholar
  62. Gischler, E., 1992, Das devonische Atoll von Iberg und Winterberg im Harz nach Ende des Riffwachstums, Geol. Jahrbuch A129:5–193.Google Scholar
  63. Grotzingen J. P., 1990, Geochemical model for stromatolite decline, Am. J. Sci. 290A:80–103.Google Scholar
  64. Grotzinger, J. P., 1994, Trends in Precambrian carbonate sediments and their implication for the understanding of the evolution of life, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 245–258.Google Scholar
  65. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kauffman, A. J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Science 270:598–604.Google Scholar
  66. Gruet, Y., and Brodeur, Y., 1995, Ecological conditions of modern sabellaran reefs development: Geological Implications. Publ. Service Géol. Luxembourg 29:73–80.Google Scholar
  67. Hamdi, B., Rozanov, A. Y., and Zhuravlev, A. Y., 1995, Latest Middle Cambrian metazoan reef from northern Iran, Geol. Mag. 132:367–373.Google Scholar
  68. Hardie, L. A., 1996, Secular variation in seawater chemistry: an explanation for coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y., Geology 24:279–283.Google Scholar
  69. Higgins, A. K., Ineson, J. R., Peel, S. J., Surlyk, F., and Sønderholm, M., 1991, Lower Palaeozoic Franklinian Basin of north Greenland, Bull. Grønlands Geol. Undersøgelse 160:71–140.Google Scholar
  70. Hoffman, P. F., Kauffman, A. J., and Halverson, G. P., 1998a, Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia, GSA Today 8: 1–9.Google Scholar
  71. Hoffman, P. F., Kauffman, A. J., and Halverson, G. P., 1998b, A snowball earth, Science 281:1342–1346.Google Scholar
  72. Hubbard D. K., Miller, A. I., and Scaturo, D., 1990, Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): Applications to the nature of reef systems in the fossil record, J. Sediment. Petrol. 60:335–360.Google Scholar
  73. Ineson, J. R., and Peel, J. S., 1997, Cambrian shelf stratigraphy of north Greenland, Geol. Greenland Survey Bull. 173:1–120.Google Scholar
  74. Ineson, J. R., Surlyk, F., Higgins, A. K., and Peel, J. S., 1994, Slope, apron and deep shelf sediments of the Brømlund Fjord and Tavskens Iskappe groups (Lower Cambrian-Lower Ordovician), Bull. Grønlands Geol. Undersøgelse 169:7–24.Google Scholar
  75. Isaacson, P. E., 1997, Late Devonian (Famennian) glaciation in Gondwana and forced marine regression in North America, in: Abstracts Geological Society America Annual Meeting, Salt Lake City, USA, p. 41.Google Scholar
  76. James, N. P., 1997, The cool-water carbonate depositional realm, SEPM Spec. Publ. 56:1–20.Google Scholar
  77. James, N. P., and Bourque, P. A., 1992, Reefs and mounds, in: Fades Models (R. G. Walker and N. P. James, eds.), Geological Association of Canada, St. Johns, pp. 323–347.Google Scholar
  78. James, N. P., and Geldsetzer, H. H. J., 1989, Reefs — Canada and adjacent areas, introduction, Can. Soc. Petrol. Geol. Memoir 13:13–23.Google Scholar
  79. James, N. P., and Gravestock, D. I., 1990, Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia, Sedimentology 37:455–480.Google Scholar
  80. James, N. P., and Kobluk, D. R., 1978, Lower Cambrian patch reefs and associated sediments: Southern Labrador, Canada, Sedimentology 25:1–35.Google Scholar
  81. Jenkyns, R. J. F., 1992, Functional and ecological aspects of Ediacara assemblages, in: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, eds.), Plenum Press, New York, pp. 131–176.Google Scholar
  82. Kauffman, A. J., and Knoll, A. H., 1995, Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and geochemical implications, Precambrian Res. 73:27–49.Google Scholar
  83. Keller, M., and Bordonaro, O., 1993, Arrecifes de estromatopóridos en el Ordovicico inferior del oeste Argentino y sus implicaciones paleogeográficas, Rev. Española Paleontol. 8:165–169.Google Scholar
  84. Keller, M., Bordonaro, O., and Cañas, F., 1995, Some plate tectonic aspects of Early Ordovician reefs, western Argentine Precordillera, XII Congr. Geol. Argentino y II Congr. Exp. Hidrocarb. 1:235–240.Google Scholar
  85. Keller, M., Cañas, F., Lehnert, O., and Vaccari, N. E., 1994, The Upper Cambrian and Lower Ordovician of the Precordillera (western Argentina): Some stratigraphic reconsiderations, Newslett. Stratigr. 31:115–132.Google Scholar
  86. Kempe, S., and Kazmierczak, J., 1994, The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes, Bull. Inst. Océanogr. Monaco 133:61–116.Google Scholar
  87. Kirschvink, J. L., Ripperdan, R. L., and Evans, D. A., 1997, Evidence for a large scale reorganization of Early Cambrian continental masses by inertial interchange true polar wanders, Science 277:541–545.Google Scholar
  88. Lehnert, O., and Keller, M., 1993, Posicion estratigrafiya de los arrecifes Arenigianos en la Precordillera Argentina, Documents Lab. Géol. Lyon 125:263–275.Google Scholar
  89. Li, C. W., Chen, J. Y., and Hua, T. E., 1998, Precambrian sponges with cellular structures, Science 279:879–882.Google Scholar
  90. Lipps, J. H., Bengtson, S, and Farmer, J. D., 1992a, The Precambrian-Cambrian evolutionary transition, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein eds.), Cambridge University Press, Cambridge, England, pp. 453–457.Google Scholar
  91. Lipps, J. H., Bengtson, S., and Fedonkin, M. A., 1992b, Ecology and biogeography, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 437–441.Google Scholar
  92. Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E., 1995, Terminal Proterozoic reorganization of biogeochemical cycles, Nature 376: 53–56.Google Scholar
  93. Lohmann, K. C., 1976, Lower Dresbachian (Upper Cambrian) platform to deep shelf transitions in eastern Nevada and western Utah, Brigham Young Univ. Stud. 23:111–132.Google Scholar
  94. Margulis, L., 1981, Symbiosis in Cell Evolution, W. H. Freeman, San Francisco.Google Scholar
  95. Martin, W., and Müller, M., 1998, The hydrogen hypothesis for the first eukaryote, Nature 392:37–41.Google Scholar
  96. McIlreath, I., 1977, Association of a Middle Cambrian deep water limestone debris apron adjacent to a vertical submarine carbonate escarpment, Soc. Econ. Paleontol. Mineral. Spec. Publ. 25:113–124.Google Scholar
  97. Messing, C. G., Neumann, A. C., and Lang, J. C., 1990, Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern straits of Florida, Palaios 5:15–33.Google Scholar
  98. Moldowan, J. M., Dahl, J., Jacobson, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E., 1996, Chemostratigraphic reconstruction of biofacies, Geology 24:159–162.Google Scholar
  99. Monty, C. L. V., 1995, The rise and nature of carbonate mudmounds: An introductory actualistic approach, Spec. Publ. Int. Assoc. Sedimentol. 23:11–48.Google Scholar
  100. Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), 1995, Carbonate mud-mounds: Their origin and evolution, Spec. Publ. Int. Assoc. Sedimentol. 23: 538.Google Scholar
  101. Narbonne, G. M., 1998, The Ediacara biota: A terminal Neoproterozoic experiment in the evolution of life, GSA Today 8:11–16.Google Scholar
  102. Nestor, H., 1995, Ordovician and Silurian reefs in the Baltic area, Publ. Service Géol. Luxembourg 29:39–47.Google Scholar
  103. Neumann, A. C., Kofoed, J. W., and Keller, G., 1977, Lithoherms in the Straits of Florida, Geology 5:4–10.Google Scholar
  104. Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W., and Reitner, J., 1999, Petrology of Lower Cretaceous carbonate mudmounds (Albian, N. Spain): Insights into organomineralic deposits of the geological record, Sedimentology 46:837–859.Google Scholar
  105. Nikitin, I. F., Popov, L. E., and Holmer, L. E., 1996, Late Ordovician brachiopod assemblage of Hiberno-Salairan type from central Kazakhstan, Geol. Föreningens Förhandlingar 118:83–96.Google Scholar
  106. Pandolfi, J. M., and Kirtley, D. W., 1998, Roles for worms in reef building, Coral Reefs 17:120.Google Scholar
  107. Pratt, B. R., 1995, The origin, biota and evolution of deep-water mud-mounds, Spec. Publ. Int. Assoc. Sedimentol. 23:49–123.Google Scholar
  108. Pratt, B. R., and James, N. P., 1989, Coml-Renalcis reef complex of Early Ordovician age. St George Group, western Newfoundland, Can. Soc. Petrol. Geol. Mem. 13:224–230.Google Scholar
  109. Reid, R. P., and Macintyre, I. G., 1992, Stromatolites: Newly discovered members of the Holocene reef community, Proc. 7th Int. Coral Reef Symp., Guam, 2:1227–1228.Google Scholar
  110. Reitner, J., and Mehl, D., 1995, Early Paleozoic diversification of sponges: New data and evidence, Geol. Paläontol Mitteilungen Innsbruck 20:335–347.Google Scholar
  111. Reitner, J., and Neuweiler, F., 1995, Mud mounds: Recognizing a polygenetic spectrum of fine-grained carbonate buildups, Fades 32:2–4.Google Scholar
  112. Riding, R., 1992, Temporal variation in calcification in marine cyanobacteria, J. Geol. Soc. London 149:979–989.Google Scholar
  113. Riding, R., 1993, Phanerozoic patterns of marine CaCO3 precipitation, Naturwissenschaften 80:513–516.Google Scholar
  114. Riding, R., 1996, Long term changes in marine CaCO3 precipitation, Mem. Soc. Géol. France 169:157–166.Google Scholar
  115. Rigby, J. K., 1971, Sponges and reef and related facies through time, Proc. North Am. Paleontol. Convention J:1374–1388.Google Scholar
  116. Roberts, H. H., and Sydow, J., 1997, Siliciclastic-carbonate interactions in a tropical deltaic setting: Mahakam Delta of east Kalimantan (Indonesia), Proc. 8th Int. Coral Reef Symp. 2:1773–1777.Google Scholar
  117. Roberts, H. H., Phipps, C. V., and Effendi, L., 1987, Halimeda bioherms of the eastern Java Sea, Indonesia, Geology 15:371–374.Google Scholar
  118. Ruppel, S. C., James, E. W., Barrick, J. E., Nowlan, G., and Uyeno, T. T., 1998, High resolution Silurian δ87Sr/86Sr record: Evidence of eustatic control of seawater chemistry? NY State Museum Bull. 491:285–295.Google Scholar
  119. Savarese, M., Mount, J. F., Sorauf, J. E., and Bucklin, L., 1993, Paleobiologic and paleoenvironmental context of coral-bearing Lower Cambrian reefs, Geology 21:917–920.Google Scholar
  120. Schopf, W. J., 1992a, Paleobiology of the Archean, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 25–40.Google Scholar
  121. Schopf, W. J., 1992b, Patterns of Proterozoic microfossil diversity: An initial tentative analysis, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 529–552.Google Scholar
  122. Schopf, W. J., 1992c, Evolution of the Proterozoic biosphere: benchmarks, tempo, mode, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 581–600.Google Scholar
  123. Scrutton, C. T., 1997, The Palaeozoic corals, I: Origins and relationships, Proc. Yorkshire Geol. Soc. 51:177–208.Google Scholar
  124. Scrutton, C. T., 1998, The Palaeozoic corals, II: Structure, variation and palaeoecology, Proc. Yorkshire Geol. Soc. 52:1–57.Google Scholar
  125. Seilacher, A., 1989, Vendozoa: organismic construction in the Proterozoic biosphere, Lethaia 22:229–239.Google Scholar
  126. Seilacher, A., 1992, Vendobionta and Psammocorallia: lost constructions of Precambrian evolution, J. Geol. Soc. London 149:607–613.Google Scholar
  127. Sepkoski, J. J., and Sheehan, P. M., 1983, Diversification, faunal change and community replacement during the Ordovician radiations, in: Recent and Fossil Benthic Communities (M. J. C. Tevesz and P. L. McCall, eds.), Plenum Press, New York, pp. 673–718.Google Scholar
  128. Soja, C., and Antoshkina, A. I., 1997, Coeval development of Silurian stromatolite reefs in Alaska and the Ural Mountains: implications for geography of the Alexander terrane, Geology 25:539–542.Google Scholar
  129. Sorauf, J. E., and Savarese, M., 1995, A Lower Cambrian coral from South Australia, Palaeontology 38:757–770.Google Scholar
  130. Steam, C. W., Webby, B. D., Nestor, H., and Stock, C. W., 1999, Revised classification and terminology of Palaeozoic stromatoporoids, Acta Palaeontol. Polonica 44:1–70.Google Scholar
  131. Steele-Petrovich, M., and Bolton, T. E., 1998, Morphology and palaeoecology of a primitive mound-forming tubiculous polychaete from the Ordovician of the Ottawa Valley, Canada, Palaeontology 41:125–145.Google Scholar
  132. Thorslund, P., 1935, Über den Brachiopodenschiefer und den jüngeren Riffkalk in Dalarne, Nova Acta Regiae Soc. Sci. Upsaliensis 9:1–50.Google Scholar
  133. Trettin, H. P., 1991, Geology of the Innuitian Orogen and arctic platform of Canada and Greenland, Geol. North Am. E:163–238.Google Scholar
  134. Turner, E. C., Narbonne, G. M., and James, N. P., 1993, Neoproterozoic reef microstructures from the Little Dal Group, northwest Canada, Geology 21:259–262.Google Scholar
  135. Vidal, G., and Moczydlowska-Vidal, M., 1997, Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton, Paleobiology 23:230–246.Google Scholar
  136. Walter, M. R., 1983, Archean stromatolites: evidence of the earth’s earliest benthos, in: Earth’s Earliest Biosphere (J. W. Schopf, ed.), Princeton University Press, Princeton, NJ, pp. 187–213.Google Scholar
  137. Walter, M. J., 1994, Stromatolites: The main geological source of information on the evolution of early benthos, in: Early Life on Earth, Nobel Symposium No. 84 (S. Bengtson, ed.), Columbia University Press, New York, pp. 270–286.Google Scholar
  138. Walter, M. J., Grotzinger, J. P., and Schopf, J. W., 1992, Proterozoic stromatolites, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 253–260Google Scholar
  139. Webb, G. E., 1996, Was Phanerozoic reef history controlled by the distribution of nonenzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947–971.Google Scholar
  140. Webby, B. D., 1984, Ordovician reefs and climate: a review, in: Aspects of the Ordovician System (D. L. Bruton, ed.), Universitetsforlaget, Oslo, pp. 89–100.Google Scholar
  141. Webby, B. D., 1992, Global biogeography of Ordovician corals and stromatoporoids, in: Global Perspectives on Ordovician Geology (B. Webby and J. R. Laurie, eds.), Balkema, Rotterdam, pp. 261–276.Google Scholar
  142. Webby, B. D., 1994, Evolutionary trends in Ordovician stromatoporoids, Courier Forschungsinstitut Senckenberg 172:373–380.Google Scholar
  143. Webby, B. D., Zhen Y. Y., and Percival, I. G., 1997, Ordovician coral- and sponge-bearing associations: Distribution and significance in volcanic island shelf to slope habitats, eastern Australia, Bol. Real Soc. Española Hist. Nat. 92:163–175.Google Scholar
  144. Wilder, H., 1989, Neue Ergebnisse zum oberdevonischen Riffsterben am Nordrand des mitteleuropäischen Variscikums, Fortschritte Geol. Nordrhein-Westfalens 35:57–74.Google Scholar
  145. Wood, R. A., 1999, Reef Evolution, Oxford University Press, Oxford.Google Scholar
  146. Wood, R. A., Zhuravlev, A. Yu., and Anaaz, C. T., 1993, The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution, Sedimentology 40:829–858.Google Scholar
  147. Wray, G. A., Levinton, J. S., and Shapiro, L. H., 1997, Molecular evidence for Precambrian divergences among metazoan phyla, Science 274:568–573.Google Scholar
  148. Xiao, S., Zhang, Y. and Knoll, A. H., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391:553–558.Google Scholar
  149. Yu, C., and Shen, J., 1998, Devonian Reefs and Reef Complexes in Guilin, Guangxi, China, Jiangsu Science Technology Publishing House, Beijing.Google Scholar
  150. Zhang, Y., 1989, Multicellular thallophytes with differentiated tissues from late Proterozoic phosphatic rocks of South China, Lethaia 22:113–132.Google Scholar
  151. Zhu, Z. D., Guo, C. X., Liu, B. L., Hu, M. Y., Hu, A. M., Xiao, C. T., Meng, X. F., and Li, X. M., 1993, Lower Ordovician reefs at Huanghuachang, Yichang, east of the Yangtze Gorge, Sci. Geol. Sinica 2:79–90.Google Scholar
  152. Zhu, Z. D., Jiang, Y. W., and Liu, B. L., 1995, Paleoecology of late Tremadocian reef-bearing strata in western Hubei province of China, in: Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (J. D. Cooper, M. L. Droser, and S. C. Finney, eds.), SEPM, Riverside, CA, pp. 427–428.Google Scholar
  153. Zhuravlev, A. Yu., 1986, Evolution of archeocyaths and palaeobiogeography of the Early Cambrian, Geol. Mag. 123:377–385.Google Scholar
  154. Zhuravlev, A. Yu., 1996, Reef ecosystem recovery after the Early Cambrian extinction, in: Biotic Recovery from Mass Extinction Events (M. B. Hart, ed.), Geological Society London Special Publications 2, pp. 79–96.Google Scholar
  155. Zhuravlev, A. Yu., and Wood, R. A., 1995, Lower Cambrian reefal cryptic communities, Palaeontology 38:443–470.Google Scholar
  156. Zhuravlev A. Yu., and Wood, R. A., 1996, Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event, Geology 24:311–314.Google Scholar
  157. Zhuravlev, A. Yu., Debrenne, F., and Lafuste, J., 1993, Early Cambrian microstructural diversification of Cnidaria, Courier Forschungsinstitut Senckenberg 164:365–372.Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  • Paul Copper
    • 1
  1. 1.Department of Earth SciencesLaurentian UniversitySudburyCanada

Personalised recommendations