Skip to main content

Reproductive Energy Expenditure, Intraspecific Variation and Fitness in Birds

  • Chapter

Part of the book series: Current Ornithology ((CUOR,volume 16))

Abstract

Energy is a universal resource widely assumed to play a crucial role in determining reproductive success and survival in all organisms (Carey, 1996; Walsberg, 1983;King, 1974; Cody, 1966). It is also generally believed that high energy demands constrain reproduction through limited availability of energy during single breeding attempts, or through negative effects on future reproduction ( Tinbergen and Dietz, 1994, and references therein; Meijer et al., 1989;Drent and Daan, 1980). Recent reviews of avian energetics (e.g., Carey, 1996) and numerous papers have dealt with patterns of interspecific variation in energy expenditure in relation to different behavioral or life history traits (e.g., Nagy et al., 1999; Bryant, 1997; Ricklefs, 1996; Koteja, 1991; Bennett and Harvey, 1987). These studies have focused on: (1) the existence of some absolute maximum sustainable metabolic rate (MR); (2) scaling of MR and body mass; or (3) the relationship between daily energy expenditure (DEE)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N. J., Brown, C. R., and Nagy, K. A., 1986 Energy expenditure of free-ranging Wandering Albatrosses Diomedia exulans, Physiol. Zool. 59:583–591.

    Google Scholar 

  • Ballance, L. T., 1995, Flight energetics of free-ranging Red-footed Boobies (Sula sula), Physiol. Zool. 68:887–914.

    Google Scholar 

  • Bech, C., and Ostnes, J. E., 1999, Influence of body composition on the metabolic rate of nestling European Shags (Phalacrocorax aristotelis), J. Comp. Physiol. B 169:263–270.

    Google Scholar 

  • Bech, C., Langseth, I., and Gabrielsen, G. W., 1999, Repeatability of basal metabolic rate in breeding female Kittiwakes Rissa tridactyla, Proc. R. Soc. Lond. B 266:2161–2167.

    Google Scholar 

  • Bennett, A. F., 1987, Inter-individual variability: an underutilised resource, in: New Directions in Ecological Physiology (M. E. Feder, A. F. Bennett, W. Burggren, and R. B. Huey, eds.), Cambridge University Press, Cambridge, pp. 147–169.

    Google Scholar 

  • Bennett, A. F., and Lenski, R. E., 1999, Experimental evolution and its role in evolutionary physiology, Amer. Zool. 39:346–362.

    Google Scholar 

  • Bennett, P. M., and Harvey, P. H., 1987, Active and resting metabolism in birds: allometry, phylogeny, and ecology, J. Zool. Lond. 213:327–363.

    Google Scholar 

  • Berteaux, D., 1998, Testing energy expenditure hypotheses: reallocation versus increased demand in Microtus pennsylvanicus, Acta Theriol. 43:13–21.

    Google Scholar 

  • Berteaux, D., Thomas, D W., Nergeron, J.-M., and Lapierre, H., 1996, Repeatability of daily field metabolic rate in female Meadow Voles (Microtus pennsylvanicus), Funct. Ecol. 10:751–759.

    Google Scholar 

  • Bevan, R. M., Butler, P. J., and Speakman, J. R., 1995, Daily energy expenditure of Tufted Ducks: a comparison between indirect calorimetry, doubly labeled water and heart rate, Funct. Ecol. 9:40–47.

    Google Scholar 

  • Birt-Friesen, V. L., Montevecchi, W. A., Cairns, D. K., and Macko, S. A., 1989, Activity specific metabolic rates of free-living Northern Gannets and other seabirds, Ecology 70:357–367.

    Google Scholar 

  • Blem, C. R., 1984, Ratios in avian physiology, Auk 101:153–154.

    Google Scholar 

  • Blem, C. R., 1990, Avian energy storage, in: Current Ornithology, Vol. 7 (D. M. Power, ed.), Plenum Publishers, New York, pp. 59–113.

    Google Scholar 

  • Bruinzel, L. W., and Piersma, T., 1998, Cost reduction in the cold: heat generated by terrestrial locomotion partly substitutes for thermoregulation costs in Knot Calidris canutus, Ibis 140:323–328.

    Google Scholar 

  • Bryant, D. M., 1988, Energy expenditure and body mass changes as measures of reproductive costs in birds, Funct. Ecol. 2:23–34.

    Google Scholar 

  • Bryant, D. M., 1991, Constraints on energy expenditure by birds, Proceedings of the 20thInternational Ornithological Congress, Christchurch, NZ, pp. 1989–2001.

    Google Scholar 

  • Bryant, D. M., 1997, Energy expenditure in wild birds, Proc. Nutr. Soc. 56:1025–1039.

    PubMed  CAS  Google Scholar 

  • Bryant, D. M., and Westerterp, K. R., 1980, The energy budget of the House Martin (Delichon urbica), Ardea 68:91–102.

    Google Scholar 

  • Bryant, D. M., and Westerterp, K. R., 1982, Evidence for individual differences in foraging efficiency amongst breeding birds: a study of House Martins Delichon urbica using the doubly labelled water technique, Ibis 124:187–192.

    Google Scholar 

  • Bryant, D. M., and Westerterp, K. R., 1983, Short-term variability in energy turnover by breeding House Martins Delichon urbica: a study using doubly labelled water (1J2180), J. Anim. Ecol. 52:525–543.

    Google Scholar 

  • Bryant, D. M., Hails, C. J., and Tatner, P., 1984, Reproductive energetics of two tropical bird species, Auk 101:25–37.

    Google Scholar 

  • Bryant, D. M., and Tatner, P., 1988, Energetics of the annual cycle of Dippers Cinclus cinclus, Ibis 130:17–38.

    Google Scholar 

  • Bryant, D. M., and Tatner, P., 1991, Intraspecies variation in avian energy expenditure, Ibis 133:236–245.

    Google Scholar 

  • Burness, G. P., Ydenberg, R. C., and Hochachka, P. W., 1998, Interindividual variability in body composition and resting oxygen consumption rate in breeding Tree Swallows Tachycineta bicolor, Physiol. Zool. 71:247–256.

    PubMed  CAS  Google Scholar 

  • Butler, P. J., and Woakes, A. J., 1990, The physiology of bird flight, in: Bird Migration: Physiology and Ecophysiology (E. Gwinner, ed.), Springer-Verlag, Berlin, pp. 300–318.

    Google Scholar 

  • Butler, P. J., Bevan, R. M., Woakes, A. J., Croxall, J. P., and Boyd, I. L., 1995, The use of data loggers to determine the energetics and physiology of aquatic birds and mammals, Brazil. J. Med. Biol. Res. 28:1307–1317.

    CAS  Google Scholar 

  • Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge.

    Google Scholar 

  • Calder, W. A., and King, J. R., 1974, Thermal and caloric relations in birds, in: AvianBiology, Vol. IV, (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 260–413.

    Google Scholar 

  • Carey, C., 1996, Avian Energetics and Nutritional Ecology, Chapman and Hall, New York. Chappell, M. A., Shoemaker, V. H., Janes, D. N., Maloney, S. K., and Bucher, T. L., 1993, Energetics of foraging in breeding Adelie Penguins, Ecology 74:2450–2461.

    Google Scholar 

  • Chappell, M. A., Bachman, G. C., and Odell, J. P., 1995, Repeatability of maximal aerobic performance in Belding’s Ground Squirrels, Spermophilus beldingi, Funct. Ecol. 9: 498–504.

    Google Scholar 

  • Chappell, M. A., Zuk, M., and Johnson, T. S., 1996, Repeatability of aerobic performance in Red Junglefowl: effects of ontogeny and nematode infection, Funct. Eco]. 10:578–585.

    Google Scholar 

  • Chappell, M. A., Bech, C., and Buttemer, W. A., 1999, The relationship of central and peripheral organ masses to aerobic performance variation in House Sparrows, J. Exp. Biol. 202:2269–2279.

    PubMed  Google Scholar 

  • Clutton-Brock, T. H., 1991, The Evolution of Parental Care, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Cody, M., 1966, A general theory of clutch size, Evolution 20:174–184.

    Google Scholar 

  • Daan, S., Masman, D., Strijkstra, A., and Verhulst, S., 1989, Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition, and circadian phase in the Kestrel, Falco tinnunculus, J. Biol. Rhythms 4:267–283.

    PubMed  CAS  Google Scholar 

  • Daan, S., Masman, D., and Groenewold, A., 1990, Avian basal metabolic rates: their association with body composition and energy expenditure in nature, Am. J. Physiol. 259:R333–R340.

    PubMed  CAS  Google Scholar 

  • Daan, S., Deerenberg, C., and Dijkstra, C., 1996, Increased work load precipitates natural death in the Kestrel, J. Anim. Ecol. 65:539–544.

    Google Scholar 

  • Davis, R. W., Croxall, J. P., and O’Connell, M. J., 1989, The reproductive energetics of Gentoo (Pygoscelis papua) and Macaroni (Eudyptes chrysolophus) Penguins at South Georgia, J. Anim. Ecol. 58:59–74.

    Google Scholar 

  • Deerenberg, C., Pen, I., Dijkstra, C., Arkles, B.-J., Visser, G. H., and Daan, S., 1995, Parental energy expenditure in relation to manipulated brood size in the European Kestrel Falco tinnunculus, Zoology 99:39–48.

    Google Scholar 

  • Dietz, M. W., Dekinga, A., Piersma, T., and Verhulst, S., 1999, Estimating organ size in small migrating shorebirds with ultrasonography: an intercalibration exercise, Physiol. Biochem. Zool. 72:28–37.

    PubMed  CAS  Google Scholar 

  • Drent, R. H., and Daan, S., 1980, The prudent parent: energetic adjustments in avian breeding, Ardea 68:225–252.

    Google Scholar 

  • Dykstra, C. R., Meyer, M. W., and Karasov, W. H., 1997, Validation of the doubly labeled water method in Bald Eagles (Haliaeetus leucocephalus) and a comparsion of two equations for the calculation of energy expenditure, Physiol. Zool. 70:19–26.

    PubMed  CAS  Google Scholar 

  • Endler, J. A., 1986, Natural Selection in the Wild, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Fancy, S. G., Blanchard, J. M., Holleman, D. F., Kokjer, K. J., and White, R. G., 1986, Validation of doubly labeled water method using a ruminant, Am. J. Physiol. 251:R143–R149.

    PubMed  CAS  Google Scholar 

  • Flint, E. N., and Nagy, K. A., 1984, Flight energetics of free-living Sooty Terns, Auk 101:288–294.

    Google Scholar 

  • Fournier, F., Thomas, D. W., and Garland, Jr., T., 1999, A test of two hypotheses explaining the seasonality of reproduction in temperate mammals, Funct. Ecol. 13:523–529.

    Google Scholar 

  • Furness, R. W., and Bryant, D. M., 1996, Effect of wind on field metabolic rates of breeding Northern Fulmars, Ecology 77:1181–1188.

    Google Scholar 

  • Gabrielsen, G. W., Mehlum, F., and Nagy, K. A., 1987, Daily energy expenditure and energy utilisation of free ranging Black-legged Kittiwakes (Bissa tridactyla), Condor 89: 126–132.

    Google Scholar 

  • Gabrielsen, G. W., Taylor, J. R. E., Konarzewski, M., and Mehlum, F., 1991, Field and laboratory metabolism and thermoregulation in Dovekies (Alle alle), Auk 108:71–78.

    Google Scholar 

  • Galbraith, H., Hatch, J. J., Nisbet, I. C., and Kunz, T. H., 1999, Age-related changes in efficiency among breeding Common Terns Sterna hirundo: measurement of energy expenditure using doubly-labelled water, J. Avian Biol. 30:85–96.

    Google Scholar 

  • Garland, Jr., T., and Carter, P. A., 1994, Evolutionary physiology, Annu. Rev. Physiol. 56:579–621.

    Google Scholar 

  • Gessaman, J A., and Nagy, K. A., 1988, Energy metabolism: errors in gas-exchange conversion factors, Physiol. Zool. 61:507–513.

    Google Scholar 

  • Graveland, J., and Drent, R. H., 1997, Calcium availability limits breeding success of passerines on poor soils, J. Anim. Ecol. 66:279–288.

    Google Scholar 

  • Green, D. J., and Ydenberg, R. C., 1994, Energetic expenditure of male Ospreys provisioning natural and manipulated broods, Ardea 82:249–262.

    Google Scholar 

  • Gustafsson, L., and Part, T., 1990, Acceleration of senescence in the Collared Flycatcher Ficedula albicollis, Nature 347:279–281.

    Google Scholar 

  • Hails, C. J., 1979, A comparison of flight energetics in hirundines and other birds, Comp. Biochem. Physiol. 63A:581–585.

    Google Scholar 

  • Hammond, K. A., and Diamond, J., 1997, Maximal sustained energy budgets in humans and animals, Nature 386:457–462.

    PubMed  CAS  Google Scholar 

  • Harvey, P. H., Pagel, M. D., and Rees, J. A., 1991, Mammalian metabolism and life histories, Am. Nat. 137:556–566.

    Google Scholar 

  • Hayes, J. P., and Chappell, M. A., 1990, Individual consistancy of maximal oxygen consumption in Deer Mice, Funct. Ecol. 4:495–503.

    Google Scholar 

  • Hayes, J. P., Garland, Jr., T., and Dohm, M. R.,1992, Individual variation in metabolism and reproduction of Mus: are energetics and life-history linked? Funct. Ecol. 6:5–14.

    Google Scholar 

  • Hodum, P. J., Sydeman, W. J., Visser, G. H., and Weathers, W. W., 1998, Energy expenditure and food requirements of Cassin’s Anklets provisioning nestlings, Condor 100: 546–550.

    Google Scholar 

  • Jonsson, K. I., Korpimaki, E., Pen, I., and Tolonen, P., 1996, Daily energy expenditure and short-term reproductive costs in free-ranging Eurasian Kestrels (Falco tinnunculus), Funct. Ecol. 10:475–482.

    Google Scholar 

  • Kendeigh, S. C., Dolnik, V. R., and Gavrilov, V. M.,1977, Avian energetics, in: Granivorous Birds in Ecosystems (J. Pinowski, and S. C. Kendeigh, eds.), Cambridge University Press, Cambridge, pp. 127–204.

    Google Scholar 

  • Kersten, M., and Piersma, T., 1987, High levels of energy expenditure in shorebirds: adaptations to an energetically expensive way of life, Ardea 75:175–187.

    Google Scholar 

  • King, J. R., 1974, Seasonal allocation of time and energy resources in birds, in: Avian Energetics (R. A. Paynter, ed.), Nuttall Ornithological Club, Cambridge, pp. 4–70.

    Google Scholar 

  • Klaassen, M., Bech, C., Masman, D., and Slagsvold, G., 1989, Growth and energetics of Arctic Tern chicks (Sterna paradisaea), Auk 106:240–248.

    Google Scholar 

  • Knopper, L. D., Jastram, J., and Boily, P., 1999, Average daily and basal metabolic rates in captive male Siberian Hamsters Sungorus sungorus: individual variation, correlations and repeatability, Can. Soc. Zool. Bull. 30:81.

    Google Scholar 

  • Konarzewski, M., and Diamond, J., 1995, Evolution of basal metabolic rate and organ masses in laboratory mice, Evolution 49:1239–1248.

    Google Scholar 

  • Kooyman, G. L., Cherel, Y., LeMaho, Y., Croxall, J. P., Thorson, P. H., Ridoux, V., and Kooyman, C. A., 1992, Diving behavior and energetics during foraging cycles in King Penguins, Ecol. Monogr. 62:143–163.

    Google Scholar 

  • Koteja, P., 1991, On the relation between basal and field metabolic rates in birds and mammals, Funct. Ecol. 5:56–64.

    Google Scholar 

  • Koteja, P., 1996, Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69:994–1020.

    Google Scholar 

  • Krebs, H. A., 1950, Body size and tissue respiration, Biochim. Biophys. Acta 4:249–269. Lack, D., 1947, The significance of clutch size, Ibis 89:302–352.

    Google Scholar 

  • Lemon, W. C., 1993, The energetics of lifetime reproductive success in the Zebra Finch Taeniopygia guttata, Physiol. Zool. 66:946–963.

    Google Scholar 

  • Lehikoinen, E., 1987, Seasonality of the daily weight cycle in wintering passerines and its consequences, Omis Scand. 18:216–226.

    Google Scholar 

  • Lifson, N., and McClintock, R., 1966, Theory of use of the turnover rates of body water for measuring energy and material balance, J. Theor. Biol. 12:46–74.

    PubMed  CAS  Google Scholar 

  • McNab, B. K., 1997, On the utility of uniformity in the definition of basal rate of metabolism, Physiol. Zool. 70:718–720.

    PubMed  CAS  Google Scholar 

  • Masman, D., and Klaassen, M., 1987, Energy expenditure during free flight in trained and free-living Kestrels (Falco tinnunculus), Auk 104:603–616.

    Google Scholar 

  • Masman, D., Gordijn, M., Daan, S., and Dijkstra, C., 1986, Ecological energetics of the Kestrel: field estimates of energy intake throughout the year, Ardea 74:24–39.

    Google Scholar 

  • Masman, D., Daan, S., and Dijkstra, C., 1988, Time allocation in the Kestrel, Falco tinnunculus, and the principle of energy minimisation, J. Anim. Ecol. 57:411–432.

    Google Scholar 

  • Meerlo, P., Bolle, L., Visser, G. H., Masman, D., and Daan, S., 1997, Basal metabolic rate in relation to body composition and daily energy expenditure in the Field Vole, Microtus agrestis, Physiol. Zool. 70:362–369.

    PubMed  CAS  Google Scholar 

  • Meijer, T., Masman, D., and Daan, S., 1989, Energetics of reproduction in female Kestrels, Auk 106:549–559.

    Google Scholar 

  • Merino, S., Potti, J., and Moreno, J., 1996, Maternal effort mediates the prevalence of trypanosomes in the offspring of a passerine bird, Proc. Natl. Acad. Sci. USA 93: 5726–5730.

    PubMed  CAS  Google Scholar 

  • Mock, P. J., 1991, Daily allocation of time and energy of Western Bluebirds feeding nestlings, Condor 93:598–611.

    Google Scholar 

  • Monaghan, P., and Nager, R. G., 1997, Why don’t birds lay more eggs? Trends Ecol. Evol. 12:270–274.

    PubMed  CAS  Google Scholar 

  • Moreno, J., 1989, Variation in daily energy expenditure in nesting Northern Wheatears Oenanthe oenanthe, Auk 106:18–25.

    Google Scholar 

  • Moreno, J., and Carlson, A., 1989, Clutch size and the costs of incubation in the Pied Flycatcher Ficedula hypoleuca, Omis. Scand. 20:123–128.

    Google Scholar 

  • Moreno, J., and Sanz, J. J., 1994, The relationship between the energy expenditure during incubation and clutch size in the Pied Flycatcher Ficedula hypoleuca, J. Avian. Biol. 25:125–130.

    Google Scholar 

  • Moreno, J., Gustafsson, L., Carlson, A., and Part, T., 1991, The cost of incubation in relation to clutch size in the Collared Flycatcher Ficedula albicollis, Ibis 133:186–193.

    Google Scholar 

  • Moreno, J., Cowie, R. J., Sanz, J. K., and Williams, R. S. R., 1995, Differential response by males and females to brood manipulations in the Pied Flycatcher: energy expenditure and nestling diet, J. Anim. Ecol. 64:721–732.

    Google Scholar 

  • Moreno, J., Potti, J., and Merino, S., 1997, Parental energy expenditure and offspring size in the Pied Flycatcher Ficedula hypoleuca, Oikos 79:559–567.

    Google Scholar 

  • Moreno, J., Merino, S., Potti, J., de Leon, A., and Rodriguez, R., 1999, Maternal energy expenditure does not change with flight costs or food availability in the Pied Flycatcher (Ficedula hypoleuca): costs and benefits for nestlings, Behay. Ecol. Sociobiol. 46:244–251.

    Google Scholar 

  • Murphy, M. E., 1996, Nutrition and metabolism, in: Avian Energetics and Nutritional Ecology (C. Carey, ed.), Chapman and Hall, New York, pp. 31–60.

    Google Scholar 

  • Nager, R. G., and van Noordwijk, A. J., 1992, Energetic limitation in the egg-laying period of the Great Tit, Proc. R. Soc. Lond. B 249:259–263.

    Google Scholar 

  • Nagy, K. A., 1980, CO2 production in animals: analysis of potential errors in the doubly labeled water method, Am. J. Physiol. 238:R446–R473.

    Google Scholar 

  • Nagy, K. A., 1983, The Doubly Labeled Water Method: A Guide to Its Use, University of California, Los Angeles.

    Google Scholar 

  • Nagy, K. A., 1989, Field bioenergetics: accuracy of models and methods, Physiol. Zool. 62:237–252.

    Google Scholar 

  • Nagy, K. A., and Costa, D. P., 1980, Water flux in animals: analysis of potential errors in the tritiated water method, Am. J. Physiol. 238:R454–R465.

    PubMed  CAS  Google Scholar 

  • Nagy, K. A., Siegfried, W. R., and Wilson, R. P., 1984, Energy utilization of free-ranging Jackass Penguins Spheniscus demersus, Ecology 65:1648–1655.

    Google Scholar 

  • Nagy, K. A., Girard, I. A., and Brown, T. K., 1999, Energetics of free-ranging mammals, reptiles, and birds, Annu. Rev. Nutr. 19:247–277.

    CAS  Google Scholar 

  • Nilsson, J. A., and Svensson, E., 1996, The cost of reproduction: a new link between current reproductive effort and future reproductive success, Proc. R. Soc. Lond. B 263:711–714.

    Google Scholar 

  • Norberg, R. A., 1981, Temporary weight decrease in breeding birds may result in more fledged young, Am. Nat. 118:838–850.

    Google Scholar 

  • Obst, B. S., and Nagy, K. A., 1992, Field energy expenditures of the Southern Giant Petrel, Condor 94:801–810.

    Google Scholar 

  • Obst, B. S., Nagy, K. A., and Ricklefs, R. E., 1987, Energy utilization by Wilson’s Storm-petrels (Oceanites oceanicus), Physiol. Zool. 60:200–210.

    Google Scholar 

  • Obst, B. S., Russell, R. W., Hunt, Jr., G. L., Eppley, Z. A., and Harrison, N. M., 1995, Foraging radii and energetics of Least Anklets (Aethia pusilla) breeding on the Bering Sea islands, Physiol. Zool. 68:647–672.

    Google Scholar 

  • Packard, G. C., and Boardman, T. J., 1987, The misuse of ratios to scale physiological data that vary allometrically with body size, in: New Directions in Ecological Physiology, (M. E. Feder, A. F. Bennett, W. W. Burggren, and R. B. Huey, eds.), Cambridge University Press, Cambridge, pp. 216–236.

    Google Scholar 

  • Part, T., Gustafsson, L., and Moreno, J., 1992, “Terminal investment” and a sexual conflict in the Collared Flycatcher (Ficedula albicollis), Am. Nat. 140:868–882.

    PubMed  CAS  Google Scholar 

  • Peterson, C. C., Walton, B. M., and Bennett, A. F., 1998, Intrapopulation variation in ecological energetics of the Garter Snake Thamnophis sirtalis, with analysis of the precision of doubly-labeled water measurements, Physiol. Zool. 71:333–349.

    PubMed  CAS  Google Scholar 

  • Pettit, T. N., Nagy, K. A., Ellis, H. I., and Whittow, G. C., 1988, Incubation energetics of the Laysan Albatross, Oecologia 74:546–550.

    Google Scholar 

  • Piersma, T., and Morrison, R. I. G., 1994, Energy expenditure and water turnover of incubating Ruddy Turnstones: high costs under high Arctic climatic conditions, Auk 111:366–376.

    Google Scholar 

  • Piersma, T., Cadee, N., and Daan, S., 1995, Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the Knot, J. Comp. Physiol. B 165:37–45.

    Google Scholar 

  • Pilo, B., and George, J. C., 1983, Diurnal and seasonal variation in liver glycogen and fat in relation to metabolic status of liver and M. pectoralis in the migratory Starling, Sturnus roseus, wintering in India, Comp. Biochem. Physiol. 74A:601–604.

    CAS  Google Scholar 

  • Potti, J., Moreno, J., and Merino, S., 1999, Repeatability of parental effort in male and female Pied Flycatchers as measured with doubly labeled water, Can. J. Zool. 77: 174–179.

    Google Scholar 

  • Powers, D. R., 1991, Diurnal variation in mass, metabolic rate, and respiratory quotient in Anna’s and Costa’s Hummingbirds, Physiol. Zool. 64:850–870.

    Google Scholar 

  • Ramsey, S. L., and Houston, D. C., 1998, The effect of dietary amino acid composition on egg production in Blue Tits, Proc. R. Soc. Lond. B 265:1401–1405.

    Google Scholar 

  • Reyer, H-U. A., and Westerterp, K. R., 1985, Parental energy expenditure: a proximate cause of helper recruitment in the Pied Kingfisher Ceryle rudis, Behay. Ecol. Sociobiol. 17:363–369.

    Google Scholar 

  • Reynolds, P. S., and Lee, R. M., III, 1996, Phylogenetic analysis of avian energetics: passerines and nonpasserines do not differ, Am. Nat. 147:735–759.

    Google Scholar 

  • Ricklefs, R. E., 1996, Avian energetics, ecology, and evolution, in: Avian Energetics and Nutritional Ecology (C. Carey, ed.), Chapman and Hall, New York, pp. 1–30.

    Google Scholar 

  • Ricklefs, R. E., and Williams, J. B., 1984, Daily energy expenditure and water-turnover rates of adult European Starlings (Sturnus vulgaris) during the nesting cycle, Auk 101:707–716.

    Google Scholar 

  • Ricklefs, R. E., Roby, D. D., and Williams, J. B., 1986, Daily energy expenditure of Leach’s Storm-petrels during the nesting cycle, Physiol. Zool. 59:649–660.

    Google Scholar 

  • Ricklefs, R. E., Konarzewski, M., and Daan, S., 1996, The relationship between basal metabolic rate and daily expenditure in birds and mammals, Am. Nat. 147:1047–1071.

    Google Scholar 

  • Roff, D. A.,1992, The Evolution of Natural History: Theory and Analysis, Chapman and Hall, New York.

    Google Scholar 

  • Roskaft, E., Jarvi, T., Bakken, M., Bech, C., and Reinertsen, E., 1986, The relationship between social status and resting metabolic rate in Great Tits (Parus major) and Pied Flycatchers (Ficedula hypoleuca), Anim. Behay. 34:838–842.

    Google Scholar 

  • Sacher, G., 1978, Longevity and ageing in vertebrate evolution, BioScience 28:497–501.

    Google Scholar 

  • Saetre, G.-P., Slagsvold, T., Kruszewicz, A., and Viljugrein, H., 1997, Paternal care in Pied Flycatchers Ficedula hypoleuca: energy expenditure in relation to plumage colour and mating success, Ardea 85:233–242.

    Google Scholar 

  • Sanz, J. J., and Tinbergen, J. M., 1999, Energy expenditure, nestling age, and brood size: an experimental study of parental behavior in the Great Tit Parus major, Behay. Ecol. 10:598–606.

    Google Scholar 

  • Sanz, J. J., Tinbergen, J. M., Orell, M., and Rytkonen, S., 1998, Daily energy expenditure during brood rearing of Great Tits Parus major in northern Finland, Ardea 86:101–107.

    Google Scholar 

  • Schmidt-Nielsen, K., 1985, Scaling: Why is Animal Size so Important?, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schmidt-Nielsen, K., 1990,Animal Physiology: Adaptation and Environment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Sheldon, B. C., and Verhulst, S., 1994, Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology, Trends Ecol. Evol. 11:317–321.

    Google Scholar 

  • Sinervo, B., and Basolo, A. L., 1996, Testing adaptation using phenotypic manipulations, in: Adaptation (M. R. Rose and G. V. Lauder, eds.), Academic Press, San Diego, pp. 149–185.

    Google Scholar 

  • Smith, H. G., Kallander, H., and Nilsson, J. A., 1987, Effect of experimentally altered brood size on frequency and timing of second clutches in the Great Tit, Auk 104:700–706

    Google Scholar 

  • Speakman, J. R., 1997, Doubly-labelled water: Theory and practice. Chapman and Hall, London.

    Google Scholar 

  • Speakman, J R, and Racey, P. A., 1987, The equilibrium concentration of oxygen-18 in body water: implications for the accuracy of the doubly-labelled water technique and a potential new method of measuring RQ in free-living animals, J. Theor. Biol. 127:79–95.

    Google Scholar 

  • Speakman, J. R., and Racey, P. A., 1988a, Validation of the doubly labeled water technique in small insectivorous bats by comparison with indirect calorimetry, Physiol. Zool. 61:514–526.

    Google Scholar 

  • Speakman, J. R., and Racey, P. A., 1988b, Consequences of non steady-state CO2 production for accuracy of the doubly labeled water technique: the importance of recapture interval, Comp. Biochem. Physiol. 90A:337–340.

    CAS  Google Scholar 

  • Speakman, J. R., McDevitt, R. M., and Cole, K. R., 1993, Measurements of basal metabolic rate: don’t lose sight of reality in the quest for comparability, Physiol. Zool. 66:1045–1049.

    Google Scholar 

  • Speakman, J. R., Racey, P. A., Haim, A., Webb, P. I., Ellison, G. T. H., and Skinner, J. D., 1994, Inter-and intraindividual variation in daily energy expenditure of the Pouched Mouse (Saccostomus campestris), Funct. Ecol. 8:336–342.

    Google Scholar 

  • Stearns, S. C., 1992, The Evolution of Life Histories, Oxford University Press, Oxford.

    Google Scholar 

  • Swallow, J. G., Garland, T., Carter, P. A., Zhan, W -Z, and Sieck, G. C., 1998, Effects of. voluntary activity and genetic selection on aerobic capacity in House Mice (Musdomesticus), Am. J. Physiol. 84:69–76.

    CAS  Google Scholar 

  • Tatner, P., 1988, A model of the natural abundances of oxygen-18 and deuterium in the body water of animals, J. Theor. Biol. 133:267–280.

    CAS  Google Scholar 

  • Tatner, P., 1990a, Energetic demands during brood rearing in the Wheatear Oenanthe oenanthe, Ibis 132:423–435.

    Google Scholar 

  • Tatner, P., 1990b, Deuterium and oxygen-18 abundance in birds: implications for DLW energetic studies, Am. J. Physiol. 258:R804–R812.

    PubMed  CAS  Google Scholar 

  • Tatner, P., and Bryant, D. M., 1989, Doubly-labelled water technique for measuring energy expenditure, in: Techniques in Comparative Respiratory Physiology (C. R. Bridges and P. J. Butler, eds.) Cambridge University Press, Cambridge, pp. 77–112.

    Google Scholar 

  • Thomas, D. W., Martin, K., and Lapierre, H., 1994, Doubly labelled water measurements of field metabolic rate in White-tailed Ptarmigan: variation in background isotope abundances and effect on CO2 production, Can. J. Zool. 72:1967–1972.

    Google Scholar 

  • Tiebout, H. M., and Nagy, K. A., 1991, Validation of the doubly labeled water method (3HH180) for measuring water flux and CO2 production in the tropical hummingbird Amazilla saucerottei, Physiol. Zool. 64:362–374.

    Google Scholar 

  • Tinbergen, J. M., 1987, Costs of reproduction in the Great Tit: intraseasonal costs associated with brood size, Ardea 75:111–122.

    Google Scholar 

  • Tinbergen, J. M., and Dietz, M. W., 1994, Parental energy expenditure during brood rearing in the Great Tit (Parus major) in relation to body mass, temperature, food availability and clutch size, Funct. Ecol. 8:563–572.

    Google Scholar 

  • Timbergen, J. M., and Verhulst, S., 2000, A fixed energetic ceiling to parental effort in the Great Tit? J. Anim. Ecol. 69:323–334.

    Google Scholar 

  • Trevelyan, R., Harvey, P. H., and Pagel, M. D., 1990, Metabolic rates and life histories in birds, Funct. Ecol. 4:135–141.

    Google Scholar 

  • Turner, A. K., 1983, Time and energy constraints on the brood size of Swallows, Hirundo rustica, and Sand Martins, Riparia riparia, Oecologia 59:331–338.

    Google Scholar 

  • Uttley, J., Tatner, P., and Monaghan, P., 1994, Measuring the daily energy expenditure of free-living Arctic Terns (Sterna paradisaea), Auk 111:453–459.

    Google Scholar 

  • van Noordwijk, A. J., and de Jong, G., 1986, Acquisition and allocation of resources: their influence on variation in life history tactics, Am. Nat. 128:137–142.

    Google Scholar 

  • Verhulst, S., and Tinbergen, J. M., 1997, Clutch size and parental effort in the Great Tit (Parus major), Ardea 85:111–126.

    Google Scholar 

  • Walsberg, G. E., 1983, Avian ecological energetics, in: Avian Biology, Volume VII (D. S. Farner and J. R. King, eds). Academic Press, New York, pp. 161–220.

    Google Scholar 

  • Ward, S., 1996, Energy expenditure of female Barn Swallows Hirundo rustica during egg formation, Physiol. Zool. 69:930–951.

    Google Scholar 

  • Weathers, W. W., and Sullivan, K. A., 1993, Seasonal patterns of time and energy allocation by birds, Physiol. Zool. 66:511–536.

    Google Scholar 

  • Weathers, W. W., Olsen, C. R., Siegel, R. B., Davidson, C. L., and Famula, T. R., 1999, Winter and breeding-season energetics of non-migratory White-crowned Sparrows, Auk 116:842–847.

    Google Scholar 

  • Webster, M. D., and Weathers, W. W., 1989, Validation of the single-sample doubly labeled water method, Am. J. Physiol. 256:R572–R576.

    PubMed  CAS  Google Scholar 

  • West, G. B., Brown, J. H., and Enquist, B. J., 1997, A general model for the origin of allometric scaling laws in biology, Science 276:122–126.

    PubMed  CAS  Google Scholar 

  • West, G. B., Borwn, J. H., and Enquist, B. J., 1999, The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science 284:1677–1679.

    PubMed  CAS  Google Scholar 

  • Westerterp, K. R., and Bryant, D. M., 1984, Energetics of free-existence in Swallows and Martins (Hirundinidae) during breeding: a comparative study using doubly labelled water, Oecologia 62:376–381.

    Google Scholar 

  • Westerterp, K. R., and Drent, R. M., 1985, Flight energetics of the Starling Sturnus vulgaris during the parental period, Proceedings of the International Ornithological Congress 18:392–398.

    Google Scholar 

  • Williams, J. B., 1985, Validation of the doubly labeled water technique for measuring energy metabolism in starlings and sparrows, Comp. Biochem. Physiol. 80A:349–353.

    Google Scholar 

  • Williams, J. B., 1987, Field metabolism and food consumption of Savannah Sparrows during the breeding season, Auk 104:277–289.

    Google Scholar 

  • Williams, J. B., 1988, Field metabolism of Tree Swallows during the breeding season, Auk 105:706–714.

    Google Scholar 

  • Williams, J. B., 1993, Energetics of incubation in free-living Orange-breasted Sunbirds in South Africa, Condor 95:115–126.

    Google Scholar 

  • Williams, J. B., and Nagy, K. A., 1984, Validation of the doubly labeled water technique for measuring energy metabolism in Savannah Sparrows, Physiol. Zool. 57:325–328.

    Google Scholar 

  • Williams, J. B., and Nagy, K. A., 1985, Water flux and energetics of nestling Savannah Sparrows in the field, Physiol. Zool. 58:515–525.

    Google Scholar 

  • Williams, J. B., and Dwinnel, B., 1990, Field metabolism of free-living female Savannah Sparrows during incubation: a study using doubly labeled water, Physiol. Zool. 63: 353–372.

    Google Scholar 

  • Wolf, B. O., and Walsberg, G. E., 1996, Thermal effects of radiation and wind on a small bird and implications for microsite selection, Ecology 77:2228–2236.

    Google Scholar 

  • Wright, J., Both, C., Cotton, P. A., and Bryant, D., 1998, Quality vs. quantity: energetic andnutritional trade-offs in parental provisioning strategies, J. Anim. Ecol. 67:620–634.

    Google Scholar 

  • Yom-Tov, Y., and Wright, J., 1993, Effect of heating nest boxes on egg laying in the Blue Tit (Parus caeruleus), Auk 110:95–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, T.D., Vézina, F. (2001). Reproductive Energy Expenditure, Intraspecific Variation and Fitness in Birds. In: Nolan, V., Thompson, C.F. (eds) Current Ornithology. Current Ornithology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1211-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1211-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5443-7

  • Online ISBN: 978-1-4615-1211-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics