Skip to main content

Infant Stress, Neuroplasticity, and Behavior

  • Chapter
Developmental Psychobiology

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 13))

Abstract

The fulfillment of an individual’s genome of the central nervous system ontogenetically involves a series of processes collectively termed developmental plasticity ([Perry & Pollard, 1998]). These processes govern cellular migration, synapse formation, and other aspects of the orderly development of the nervous system (Z. Hall, 1992). The term plasticity is used because of the presence and absence of transmitters, growth factors, and hormones that influence the appearance of cells and synaptic connections defining the species. Perturbations of these processes result in abnormal development ([Perry & Pollard, 1998]). Developing systems are not “fixed and immutable” but are susceptible to disturbances that reflect severity and point in developmental time ([Perry, 1997]). Experiential plasticity defines the neural changes that may occur following exogenous stimulation or social restriction. For fetuses and newborns experiential plasticity is superimposed upon the genetically synchronized developmental plasticity and both processes proceed simultaneously during early development. Experiential plasticity is understandable within the context of early stages of neural development; rate and asymptote of brain growth and maturity are very much dependent on environmental conditions and how those conditions impact the infant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader, R. (1969). Early experiences accelerate maturation of the 24-hour adrenocortical rhythm. Science, 163, 233–238

    Article  Google Scholar 

  • Ahmed, S. H., Stinus, L., Le Moal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male Wistar rats to stressor-and amphetamine-induced behavioral sensitization. Psychopharmacology, 117, 116–124

    Article  PubMed  CAS  Google Scholar 

  • Alberts, J. R., & Cramer, C. P. (1988). Ecology and experience. Sources of means and meaning of developmental change. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 1–39). New York: Plenum Press

    Google Scholar 

  • Almeida, S. S., Tonkiss, J., & Gaiter, J. R. (1996). Prenatal protein malnutrition affects avoidance but not escape behavior in the elevated T-maze test. Physiology and Behavior, 60, 191–195

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S. L., Lyss, P.J., & Teicher, M. H. (1998). Maturational changes in the dopamine system do not explain amphetamine subsensitivity during adolescence. Abstract. Presented at the International Society for Developmental Psychobiology, Orleans, France

    Google Scholar 

  • Antelman, S. M. (1988). Stressor-induced sensitization to subsequent stress: Implications for the development and treatment of clinical disorders. In P. W. Kalivas & C. D. Barnes (Eds.), Sensitization in the nervous system (p. 227–256). Caldwell, NJ: Telford Press

    Google Scholar 

  • Bayon, A., Shoemaker, W. J., Bloom, F. E., Mauss, A., & Guillemin, R. (1979). Perinatal development of the endorphin and enkephalin-containing systems in the rat brain. Brain Research, 179, 93–101

    Article  PubMed  CAS  Google Scholar 

  • Berman, C. M., Rasmussen, K. L. R., & Suomi, S. J. (1994). Responses of free-ranging rhesus monkeys to a natural form of social separation. I. Parallels with mother—infant separation in captivity. Child Development,65, 1028–1041

    Article  PubMed  CAS  Google Scholar 

  • Blass, E. M., & Ciarmitaro, V. (1994). Oral determinants of state, affect, and action in newborn infants. Monographs of the Society for Research in Child Development, 59, 1–96

    Article  Google Scholar 

  • Bliss, T. V. P., Douglas, R M., Errington, M. L., & Lynch, M. A. (1986). Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. journal of Physiology, 377, 391–408

    PubMed  CAS  Google Scholar 

  • Blumberg, M. S., & Alberts, J. R. (1990). Ultrasonic vocalizations by rat pups in the cold: An acoustic byproduct of laryngeal barking? Behavioral Neuroscience, I04, 808–817

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, M. S., & Alberts, J. R. (1991) Both hypoxia and milk derivation diminish metabolic heat production and ultrasound emission by rat pups during cold exposure. Behavioral Neuroscience, 105, 1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Bremner, J. D., Scott, T. M., Delaney, R. C., Southwick, S. M., Mason, J. W., Johnson, D. R, Innis, R. B., McCarthy, G., & Charney, D. S. (1993). Deficits in short-term memory in posttraumatic stress disorder. American journal of Psychiatry, 150, 1015–1019

    PubMed  CAS  Google Scholar 

  • Bronzino, J. D., Kehoe, P., Austin-La France, R. J., Rushmore, R. J., & Kurdian, J. (1996). Neonatal isolation alters LTP in freely moving rats: Sex differences. Brain Research Bulletin, 41, 175–183

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski, S. M., Kehoe, P., & Callahan, M. (1999). Sonographie structure of isolation-induced ultrasonic calls of rat pups. Developmental Psychobiology, 34, 195–204

    Article  PubMed  CAS  Google Scholar 

  • Bruinink, A., Lichtensteiger, W., & Schlumpf, M. (1983). Pre-and postnatal ontogeny and characterizadon of dopaminergic D2, serotonergic S2 and spirodecanone binding sites in rat forebrain. Journal of Neurochemistry, 40, 1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Burns, E. M. (1980). Depressed endogenous norepinephrine during beta-adrenergic receptor ontogeny. In H. Parvez and S. Parvez (Eds.), Biogenic amines in development (pp. 663–682). New York: Elsevier/ North-Holland Biomedical Press

    Google Scholar 

  • Cabib, S., Puglisi-Allegra, S., & D’Amato, F. (1993). Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain search, 604, 232–239

    Article  CAS  Google Scholar 

  • Camp, D. M., & Robinson, T. E. (1988). Susceptibility to sensitization. Il. The influence of gonadal hormones on enduring changes in brain monoamines and behavior produced by repeated administration of n-amphetamine or restraint stress. Behavioral Brain Research, 30, 69–88

    Article  CAS  Google Scholar 

  • Cannon, W. B. (1932). The wisdom of the body New York: Norton

    Google Scholar 

  • Carden, S. E., & Hofer, M. A. (1990). Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behavioral Neuroscience, 104, 160–166

    Article  PubMed  CAS  Google Scholar 

  • Carden, S. E., & Hofer, M. A. (1991). Isolation-induced vocalizations in Wistar rat pups is not increased by naltrexone. Physiology and Behavior, 49, 1279–1282

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, K, Carter, M. C., Ames, E. W., & Morison, S. J. (1995). Attachment security and indiscriminately friendly behavior in children adopted from Romanian orphanages. Development and Psychopathology, 7, 283–294

    Article  Google Scholar 

  • Collingridge, G. L., Kehl, S.J., & McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. Journal ofPhysiology, 334, 33–46

    CAS  Google Scholar 

  • Cooper, J. R, Bloom, F. E., &Roth, R. H. (1996). The biochemical basis of neuropharmacology New York: Oxford University Press

    Google Scholar 

  • Cornell, E. H., & Gottfried, A. W. (1976). Intervention with premature human infants. Child Development, 47, 32–39

    Article  PubMed  CAS  Google Scholar 

  • Cramer, C. P., & Blass, E. M. (1983). Mechanisms of control of milk intake in suckling rats. American journal Physiology, 245, R154–R159

    CAS  Google Scholar 

  • D’Amato, F. R, Cabib, S., Puglisi-Allegra, S., Pataechioli, F. R., Cigliana, G., Maccari, S., & Angelucci, L. (1992). Effects of acute and repeated exposure to stress on the hypothlamo-pituitary-adrenocortical activity in mice during postnatal development. Hormones and Behavior, 26, 474–485

    Article  PubMed  Google Scholar 

  • DeMontis, M. G., DeVoto, P., Meloni, D., Gambarana, C., Giorgi, G., & Tagliamonte, A. (1992). NMDA receptor inhibition prevents tolerance to cocaine. Pharmacology, Biochemistry and Behavior, 42, 179–182

    CAS  Google Scholar 

  • Deneberg, V. H., & Smith, S. A. (1963). Effects of infantile stimulation and age upon behavior. journal of Comparative and Physiological Psychology, 66, 533–535

    Article  Google Scholar 

  • Denenberg, V. H., & Zarrow, M. X. (1970). Infantile stimulation, adult behaviour and adrenocortical activity. In S. Mazda and V. H. Denenberg (Eds.), The postnatal development of phenotype (pp. 123–132). Prague: Academia

    Google Scholar 

  • Diaz-Cintra, S., Cintra, L., Galvan, A., Aguilar, A., Kemper, T., & Morgane, P.J. (1991). Effects of prenatal protein deprivation on postnatal development of granule cells in the fascia dentata. Journal of Comparative Neurology, 310, 356–364

    Article  Google Scholar 

  • Dolphin, A. D., Errington, M. L., & Bliss, T. V. P. (1982). Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature, 297, 496–498

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood, E. H., & Balster, R J. (1974). Rating the behavioral effects of amphetamine. European journal of Pharmacology, 28, 35–41

    Article  PubMed  CAS  Google Scholar 

  • Emerit, M. B., Riad, M., & Hamon, M. (1992). Tropic effects of neurotransmitters during brain maturation. Biology of the Neonate, 62, 193–201

    Article  PubMed  CAS  Google Scholar 

  • Evoniuk, G. E., Kuhn, C. M., & Schanberg, S. M. (1979). The effect of tactile stimulation on serum growth hormone and tissue ornithine decarboxylase activity during maternal deprivation in rat pups. Communications in Psychopharmacology, 3, 363–370

    PubMed  CAS  Google Scholar 

  • Feigenbaum, J. J., & Yanai, J. (1984). Normal and abnormal determinants of dopamine receptor ontog eny in the central nervous system. Progress in Neurobiology, 23, 191–225

    Article  PubMed  CAS  Google Scholar 

  • Field, T. (1990). Alleviating stress in newborn infants in the intensive care unit. In B. M. Lester & E. Z. Tronick (Eds.), Stimulation and the preterm infant: The limits of plasticity (pp. 1–9). Philadelphia, PA: Saunders

    Google Scholar 

  • Field, T. (1995). Cocaine exposure and intervention in early development. In M. Lewis & M. Bendersky (Eds.), Mothers, babies, and cocaine (pp. 355–368). Hillsdale, NJ: Erlbaum

    Google Scholar 

  • Field, T., Scafidi, F., & Schanberg, S. (1987). Massage of preterm newborns to improve growth and development. Pediatric Nursing, 13, 385–387

    Google Scholar 

  • Francis, D., Diorio, J., LaPlante, P., Weaver, S., Seckl, J. R, &Meaney, M. J. (1996). The role of early environmental events in regulating neuroendocrine development: Moms, pups, stress, and glucocorticoid receptors. In C. F. Ferris & T. Grisso (Eds.), Understanding aggressive behavior in children (pp. 136–152). New York: New York Academy of Sciences

    Google Scholar 

  • Galler, J. R, Shumsky, J. S., & Morgane, P. J. (1996). Malnutrition and brain development. In A. Walker (Ed.), Nutrition in pediatrics (pp. 196–212). New York: Dekker

    Google Scholar 

  • Gibbs, D. M. (1986). Vasopressin and oxytocin:hypothalamic modulators of the stress response: A review. Psychoneuroendocrinology, 11, 131–139

    Article  PubMed  CAS  Google Scholar 

  • Glod, C.A., & Teicher, M. H. (1996). Relationship between early abuse, post-traumatic stress disorder, and activity levels in prepubertal children. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 1384

    Article  PubMed  CAS  Google Scholar 

  • Gluck, J. P., Harlow, H. F., & Schultz, K. A. (1973). Differential effect of early enrichment and deprivation on learning in the rhesus monkey (Macaca mulatta). Journal of Comparative and Physiological Psychology, 84, 598–604

    Article  Google Scholar 

  • Gressens, P., Muaku, S. M., Besse, L., Nsegbe, E., Gallego, J., Delpech, B., Gaultier, C., Evrard, P., Ketelslegers, J. M., & Maiter, D. (1997). Maternal protein restriction early in rat pregnancy alters brain development in the progeny. Developmental Brain Research, 103, 21–35

    Article  PubMed  CAS  Google Scholar 

  • Hall, F. S., Wilkinson, L. S., Humby, T, & Robbins, T. W. (1999). Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse, 32, 37–43

    Article  PubMed  CAS  Google Scholar 

  • Hall, Z. (1992). An introduction to molecular neurobiology Sunderland, MA: Sinauer

    Google Scholar 

  • Harlow, H. F. (1958). The nature of love. American Psychologist, 12, 673–685

    Article  Google Scholar 

  • Harlow, H. F. (1959). Love in infant monkeys. Scientific American, 200, 68

    Article  PubMed  CAS  Google Scholar 

  • Harlow, H. F., & Harlow, M. K. (1962). Social deprivation in monkeys. Scientific American, 207, 137–146

    Google Scholar 

  • Harlow, H. F., & Suomi, S.J. (1971). Social recovery by isolation-reared monkeys. Proceedings of the National Academy of Sciences of the USA, 68, 1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Harlow, H. F., Schultz, K. A., Harlow, M. K., & Mohr, D.J. (1971). The effects of early adverse and enriched environments on the learning ability of rhesus monkeys. In L. E. Jarrard (Ed.), Cognitive processes of nonhuman primates (pp. 121–148). New York: Academic Press

    Google Scholar 

  • Harris, E. W., & Newman, J. D. (1988). Primate models for the management of separation anxiety. In J. D. Newman (Ed.), The physiological control of mammalian vocalization (pp. 321–330) New York: Plenum Press

    Chapter  Google Scholar 

  • Harris, E. W., Ganong, A. H., & Cotman, C. W. (1984). Long-term potentiation in the hippocampus involves activation of Nmethyl-n-aspartate receptors. Brain Research,323, 132–137

    Article  PubMed  CAS  Google Scholar 

  • Harris, E. W., Ganong, A. H., Monaghan, D. T., Watkins, J. C., & Cotman, C. W. (1986). Action of 3–2carboxypiperazin-4-y1)-propyl-l-phosphonic acid (CPP): A new and highly potent antagonist of ALmethyI-n-aspartate receptors in the hippocampus. Brain Research, 382 174–177

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory New York: Wiley

    Google Scholar 

  • Heim, C., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1997). Persistent changes in corticotropinreleasing factor systems due to early life stress: Relationship to the pathophysiology of major depression and post-traumatic stress disorder. Psychopharmacology Bulletin, 33, 185–192

    PubMed  CAS  Google Scholar 

  • Hess, J. L., Denenberg, V. H., Zarrow, M. X., & Pfeifer, W. D. (1969). Modification of the corticosterone response curve as a function of handling in infancy. Physiology and Behavior, 4, 109–112

    Article  Google Scholar 

  • Higley, J. D., Suomi, S. J., &Linnoila, M. (1991). CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology, 103, 551–556

    Article  PubMed  CAS  Google Scholar 

  • Higley, J. D., Hopkins, W. D., Thompson, W. W., Byrne, E. A., Hirsch, R. M., & Suomi, S. J. (1992). Peers as primary attachment sources in yearling rhesus monkeys (Macaca mulatta). Developmental Psychology,28, 1163–1171

    Article  Google Scholar 

  • Hofer, M. A. (1983). The mother-infant interaction as a regular of infant physiology and behavior. In L. A. Rosenblum & H. Moltz (Eds.), Symbiosis in parent—offsring interactions (pp. 61–75). New York: Plenum Press

    Chapter  Google Scholar 

  • Hofer, M. A., & Shair, H. (1980). Sensory processes in the control of isolation-induced ultrasonic vocalization by 2-week-old rats. Journal of Comparative and Physiological Psychology, 94, 271–279

    Article  PubMed  CAS  Google Scholar 

  • Hofer, M. A., & Shair, H. (1982). Control of sleep—wake states in the infant rat by features of the mother—infant relationship. Developmental Psychobiology, 15, 229–243

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wieset, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology (London), 206, 419–436

    CAS  Google Scholar 

  • Imperato, A., Angelucci, L., Casolini, P., Zocchi, A., & Puglisi-Allegra, S. (1992). Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Research, 577, 194–199

    Google Scholar 

  • Ito, Y., Teicher, M. N., Glod, C. A., Harper, D., Magnus, E., & Gelbard, H. A. (1993). Increased prevalence of electropliysiological abnormalities in children with psychological, physical, and sexual abuse. Journal of Neuropsychiatry, 5, 401–408

    CAS  Google Scholar 

  • Ito, Y., Teicher, M. N., Glod, C. A., & Ackerman, E. (1998). Preliminary evidence for aberrant cortical development to abused children: A quantitative EEG study. Journal of Neuropsychiatry and Clinical Neuroscience, 298, 298

    Google Scholar 

  • Jones, L., Fischer, I., & Levitt, P. (1996). Region-specific alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cerebral Cortex, 6, 431–435

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H. (1991). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137–167

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L., Kossut, M., & Skangiel-Kramska, J. (1997). Glutamate receptors in cortical plasticity: Molecular and cellular biology. Physiological Reviews, 77, 217–255

    PubMed  CAS  Google Scholar 

  • Kalin, N. H., Shelton, S. E., & Barksdale, C. M. (1988). Opiate modulation of separation-induced distress in non-human primates. Brain Research, 440, 285–292

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Alesdatter, J. E. (1993). Involvement of Zmethyl-n-aspartate receptor stimulation in the centra tegmental area and amygdala in behavioral sensitization to cocaine. Journal of Pharmacology and Experimental Therapeutics, 267, 486–495

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Duffy, P. (1989). Similar effects of daily cocaine and stress on mesocortico-limbic dopamine neurotransmission in the rat. Biological Psychiatry, 25, 913–928

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., Duffy, P., Abhold, R., & Dilts, R. P. (1988). Sensitization of mesolimbic dopamine neurons by neuropeptides and stress. In P. W. Kalivas & C. D. Barnes (Ms.), Sensitization in the nervous system (pp. 119–144), Caldwell, NJ: Telford Press

    Google Scholar 

  • Kalivas, P. W., Sorg, B. A., & Hooks, M. S. (1993). The pharmacology and neural circuitry of sensitization to psychostimulants. Behavioral Pharmacology, 4, 315–334

    Article  CAS  Google Scholar 

  • Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sciences, 45, 599–606

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P. (1988). Opioids, behavior, and learning in mammalian development. In N. Adler & E. M. Blass (Eds.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 309–347). New York: Plenum Press

    Google Scholar 

  • Kehoe, P., & Blass, E. M. (1986a). Behaviorally functional opioid systems in infant rats: I. Evidence for olfactory and gustatory classical conditioning. Behavioral Neuroscience, 100, 359–367

    Article  CAS  Google Scholar 

  • Kehoe, P., & Blass, E. M. (1986b). Central nervous system mediation of positive and negative reinforcement in neonatal albino rats. Developmental Brain Research, 27, 69–75

    Article  Google Scholar 

  • Kehoe, P., & Blass, E. M. (1986c). Opioid mediation of separation distress in 10-day-old rats: Reversal of stress with maternal stimuli. Developmental Psychobiology, 19, 385–398

    Article  CAS  Google Scholar 

  • Kehoe, P., & Blass, E. M. (1986d). Behaviorally functional opioid systems in infant rats: II. Evidence for pharmacological, physiological and psychological mediation of pain and stress. Behavioral Neuroscience, 100, 624–630

    Article  CAS  Google Scholar 

  • Kehoe, P., & Blass, E. M. (1989), Conditioned opioid release in ten-day-old rats. Behavioral Neuroscience, 103, 423–428

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P., & Bronzino, J. D. (1999). Neonatal stress alters LTP in freely moving male and female adult rats. Hippocampus, 9, 651–658

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P., Hoffman, J., Austin-LaFrance, R, & Bronzino, J. (1995). Neonatal isolation enhances hippo-campal LTP in freely-moving juvenile rats, Experimental Neurology, 136, 89–97

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P., Clash, K., Skipsey, K., & Shoemaker, W. J. (1996). Brain dopamine response in isolated 10-dayold rat pups: Assessment using D2 binding and dopamine turnover. Pharmacology, Biochemistry and Behavior, 53, 41–49

    Article  CAS  Google Scholar 

  • Kehoe, P., Shoemaker, W. J., Triano, L., Hoffman, J., & Arons, C. (1996). Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile following amphetamine challenge. Behavioral Neuroscience, 110, 1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P., Triano, L., Glennon, C., & Daigle, A. (1997). Juvenile rats stressed as infants exhibit differential dopamine and activity levels following restraint. Society for Neuroscience Abstracts, 23, 227

    Google Scholar 

  • Kehoe, P., Shoemaker, W. J., Arons, C., Triano, L., & Suresh, G. (1998). Repeated isolation stress in the neonatal rat: Relation to brain dopamine systems in the 10-day-old rat. Behavioral Neuroscience, 112, 1466–1474

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, P., Shoemaker, W. J., Triano, L., Callahan, M., & Rappolt, G. (1998). Adults stressed as neonates show exaggerated behavioral responses to both pharmacological and environmental challenges. Behavioral Neuroscience, 112, 116–125

    Google Scholar 

  • Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience, 83, 681–689

    Article  PubMed  CAS  Google Scholar 

  • Kesson, W. (1965). The child New York: Wiley

    Google Scholar 

  • Kim, J. J., & Yoon, K. S. (1998). Stress: Metaplastic effects in the hippocampus. TINS, 21, 505–509

    PubMed  CAS  Google Scholar 

  • Kolta, M. G., Scalzo, F. M., Ali, S. F., & Hoison, R. R. (1990). Ontogeny of the enhanced behavioral response to amphetamine-pretreated rats. Psychopharmacology, 100, 377–382

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski, R., & Segal, D. S. (1988). Psychomotor stimulant-induced sensitization: Behavioral and neurochemical correlates. In P. W. Kalivas & C. D. Barnes (Eds.), Sensitization in the nervous system (pp. 175–206). Caldwell, NJ: Telford Press

    Google Scholar 

  • Kuhn, C. M., Schanberg, S. M., Field, T., Symanski, R., Zimmerman, E., Scafidi, F., & Roberts, J. (1991). Tactile/kinesthetic stimulation effects on sympathetic and adrenocortical function in preterm infants. Journal of Pediatrics, 119, 434–440

    Article  PubMed  CAS  Google Scholar 

  • Lauder, J. M. (1993). Neurotransmitters as growth regulatory signals: Role of receptors and second messenger systems. Trends in Neuroscience, 16, 223–239

    Article  Google Scholar 

  • Levine, S. (1962). Plasma-free corticoid response to electric shock in rats stimulated in infancy. Science, 135, 795–796

    Article  PubMed  CAS  Google Scholar 

  • Levine, S., Chevalier, J. A., & Korchin, S. J. (1956). The effects of early shock and handling on later avoidance learning. Journal of Personality, 24, 475–493

    Article  PubMed  CAS  Google Scholar 

  • Levitt, R, Harvey, J. A., Freidman, E., Simansky, K, & Murphy, E. H. (1997). New evidence for neuro-transmitter influences on brain development. Trends in Neuroscience, 20, 269–274

    Article  CAS  Google Scholar 

  • Levitt, P., Reinoso, B., & Jones, I. (1998). The critical impact of early cellular environment on neuronal development. Preventive Medicine, 27, 180–183

    Article  PubMed  CAS  Google Scholar 

  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freeman, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamicpituitary—adrenal responses to stress. Science, 277, 1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Maier, S. E, & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence.Journal ofExperimental Psychology: General 103, 3–46

    Article  Google Scholar 

  • Marek, P., Ben-Eliyahu, S., Vaccarino, A., & Liebeskind, J. C. (1991). Delayed application of MK-801 attenuates development of morphine tolerance in rats. Brain Research, 558, 163–165

    Article  PubMed  CAS  Google Scholar 

  • Marek, P., Ben-Eliyahu, S., Gold, M., & Liebeskind, J. C. (1991). Excitatory amino acid antagonists (kynurenic acid and MK-801) attenuate the development of morphine tolerance in the rat. Brain Research, 547, 77–81

    Article  PubMed  CAS  Google Scholar 

  • Matthews, K., Robbins, T. W., Everitt, B. J., & Caine, S. B. (1999). Repeated neonatal maternal separation alters intravenous cocaine self-administration in adult rats. Psychopharmaoclogy (Berlin), 141,123–134

    Google Scholar 

  • McCormick, C. M., Kehoe, P., & Kovacs, S. (1998). Corticosterone release in response to repeated, short episodes of neonatal isolation: Evidence of sensitization. International Journal of Developmental Neuroscience 16, 175–185

    Article  PubMed  CAS  Google Scholar 

  • McCormick, C. M., Rood, B., & Kehoe, P. (1998). Neonatal isolation alters corticosterone response to restraint stress in juvenile but not adult rats. Society for Neuroscience Abstracts, 24, 117

    Google Scholar 

  • McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205–216

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, P. J., Tobias, S. W., Max Lang, C., & Zagon, E. S. (1997). Opioid receptor blockade during prenatal life modifies postnatal behavioral development. Pharmacology, Biochemistry and Behavior, 58, 1075–1082

    Article  CAS  Google Scholar 

  • Meaney, M. J., Bhatnagar, S., Larocque, S., McCormick, C., Shnaks, N., Sharma, S., Smythe, J., Viau, V., & Plotsky, P. M. (1993). Individual differences in the hypothalamic—pituitary—adrenal stress response and the hypothalamic CRF system. Annals of the New York Academy of Sciences, 297, 70–85

    Article  Google Scholar 

  • Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Seckl, J. R., & Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 49–72

    Article  PubMed  CAS  Google Scholar 

  • Mills, E., Bruckert, J. W., & Smith, P. G. (1990). Influence of postnatal maternal stress on blood pressure and heart rate of juvenile and adult rat offspring. Departmental Psychobiology, 23, 839–847

    Article  CAS  Google Scholar 

  • Moore, C. L., & Chadwick-Dias, A. M. (1986). Behavioral responses of infant rats to maternal licking: Variations with age and sex. Developmental Psychobiology, 19, 427–438

    Article  PubMed  CAS  Google Scholar 

  • Moore, C. L., & Morelli, G. A. (1979). Mother rats interact differently with male and female offspring. Journal of Comparative and Physiological Psychology, 93, 677–684

    Article  PubMed  CAS  Google Scholar 

  • Morgane, P. J., Austin-LaFrance, R., Bronzino, J., Tonldss, J., Diaz-Cintra, S., Cintra, L., Kemper, T., & Galler, J. R. (1993). Prenatal malnutrition and development of the brain. Neuroscience Behavioral Review, 17, 91–128

    Article  CAS  Google Scholar 

  • Morgane, P.J., Bronzino, J. D., Austin-LaFrance, R. J., & Galler, J. R. (1996). Malnutrition, central nervous system effects. Encyclopedia of Neuroscience, 717, 1–9

    Google Scholar 

  • Murrin, L. C., & Zeng, W. (1989). Dopamine DI receptor development in the rat striatum: Early localization in striosomes. Brain Research, 480, 170–177

    Article  PubMed  CAS  Google Scholar 

  • Neal, B. S., & Joyce, J. N. (1992). Neonatal 6-OHDA lesions differentially affect striatal DI and D2 receptors. Synapse, 11, 35–46

    Article  PubMed  CAS  Google Scholar 

  • Novak, M. A., & Harlow, H. F. (1974). Social recovery for the first year of life: 1. Rehabilitation and therapy. Developmental Psychology, 11, 453–465

    Article  Google Scholar 

  • Ogawa, T, Mikuni, M., Kuroda, Y., Muneoka, K., Mori, K. J., & Takahashi, K. (1994). Periodic maternal deprivation alters stress response in adult offspring, potentiates the negative feedback regulation of restraint stress-induced adrenocortical response and reduces the frequencies of open field-induced behaviors. Pharmacology, Biochemistry and Behavior, 49, 961–967

    Article  CAS  Google Scholar 

  • Olsen, L., Boreus, O., & Seiger, A. (1973). Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain. Zeitschrift für Anata mie and Entwicklungsgeschichte, 139, 259–282

    Article  Google Scholar 

  • Oppenheim, R W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: A neuroembryological perspective. In K. Connelly & H. Prechtl (Eds.), Maturation and development: Biological and psychological perspectives London; Spastica Society

    Google Scholar 

  • Overton, P. G., Richard, C. D., Berry, M. S., & Clark, D. (1999). Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport, 10, 2, 221–226

    Article  PubMed  CAS  Google Scholar 

  • Panksepp, J., Herman, B., Conner, R., Bishop, P., & Scott, J. P. (1978). The biology of social attachments: Opiates alleviate separation distress. Biological Psychiatry, 13, 607–618

    PubMed  CAS  Google Scholar 

  • Panksepp, J., Meeker, R., & Bean, N. J. (1980). The neurochemical of crying. Pharmacology, Biochemistry and Behavior, 12, 437–443

    Article  CAS  Google Scholar 

  • Perry, B. D. (1997). Incubated in terror: Neurodevelopmental factors in the “cycle of violence.” In D. Osofsky (Ed.), Children in a violent society (pp. 124–149). New York: Guilford Press

    Google Scholar 

  • Perry, B. D., & Pollard, R. (1997). Altered brain development following global neglect in early childhood. Society for Neuroscience Abstracts, 23, 16–25

    Google Scholar 

  • Perry, B. D., & Pollard, R. (1998). Homeostasis, stress, trauma, and adaptation: A neurodevelopmental view of childhood trauma. Child and Adolescent Psychiatric Clinics of North America, 7, 811–819

    Google Scholar 

  • Plotsky, P. M. (1987). Regulation of hypophysiotropic factors mediating ACTH secretion. Annals of the New York Academy of Sciences, 512, 205–217

    Article  PubMed  CAS  Google Scholar 

  • Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Research, 18, 195–200

    Article  PubMed  CAS  Google Scholar 

  • Prasad, B. M., Sorg, B. A., Ulibarri, C., & Kalivas, P. W. (1995). Sensitization to stress and psychostimulants. Involvement of dopamine transmission versus the HPA axis. Annals of the New York Academy of Sciences, 771, 617–625

    Article  PubMed  CAS  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error? TINS, 22, 146–151

    PubMed  CAS  Google Scholar 

  • Ribble, M. A. (1944). Infantile experience in relation to personality development. In J. McV. Hunt (Ed.), Personality and behavior disorders (pp. 621–651). New York: Ronald Press

    Google Scholar 

  • Richter, C. P. (1976). The psychobiology of Curt Richter Baltimore, MD: York Press

    Google Scholar 

  • Rivier, C. L., & Plotsky, P. M. (1986). Mediation by corticotropin releasing factor (CRF) of adenohypophysical hormone secretion. Annual Review of Physiology, 48, 475–494

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E. (1988). Stimulant drugs and stress; factors influencing the susceptibility to sensitization. In C. Barnes & P. Kalivas (Eds.), Sensitization of the central nervous system (pp. 145–173). Caldwell, NJ: Telford Press

    Google Scholar 

  • Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Research Review, 11, 157–198

    Article  CAS  Google Scholar 

  • Robinson, T. E., & Kolb, B. (1997). Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. Journal of Neuroscience, 17, 84–91

    Google Scholar 

  • Robinson, T. E., & Kolb, B. (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. European Journal of Neuroscience, 11, 1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E., Jursons, P. A., Bennett, J. A., & Bentgen, K. M. (1988). Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with amphetamine: A microdialysis study in freely moving rats. Brain Research,462, 211–222

    Article  PubMed  CAS  Google Scholar 

  • Rogers, C. M., & Davenport, R. K. (1970). Chimpanzee maternal behavior. In G. H. Bourne (Ed.), The chimpanzee (pp. 361–368). Basel: Karger

    Google Scholar 

  • Rosenblum, L. A. (1968). Mother-infant relations and early behavioral development in the squirrel monkey. In L. Rosenblum & R. W. Cooper (Eds.), The squirrel monkey (pp. 207–234). New York: Academic Press

    Google Scholar 

  • Rosenblum, L. A., & Paully, G. S. (1984). The effects of varying environmental demands on maternal infant behavior. Child Development, 55, 305–314

    Article  PubMed  CAS  Google Scholar 

  • Rosengarten, H., & Friedhoff, A. J. (1979). Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science, 203, 1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky, R. M. (1992). How do glucocorticoids endanger the hippocampal neuron? In Stress, the aging brain, and the mechanisms of neuron death (pp. 223–258). Cambridge, MA: MIT Press

    Google Scholar 

  • Sarvey, J. M., Burgard, E. C., & Decker, G. (1989). Long-term potentiation: Studies in the hippocampal slice. Journal of Neuroscience Methods, 28, 109–124

    Article  PubMed  CAS  Google Scholar 

  • Scarr-Salapatek, S., & Williams, M. L. (1973). The effects of early stimulation on low-birth-weights infants. Child Development, 44, 94–101

    Article  PubMed  CAS  Google Scholar 

  • Schlumpf, M., Lichtensteiger, W., Shoemaker, W. J., & Bloom, F. E. (1980). Fetal monoamine systems: Early stages and cortical projections. In H. Parvez & S. Parvez (Eds.), Biogenic amines in development (pp. 567–590). New York: Elsevier/North-Holland Biomedical Press

    Google Scholar 

  • Seeman, P., & VanTol, H. H. M. (1994). Dopamine receptor pharmacology. TIPS, 15, 264–270

    PubMed  CAS  Google Scholar 

  • Segal, D. S., & Kuczenski, R. (1987). Individual differences in responsiveness to single and repeated amphetamine administration: Behavioral characteristics and neurochemical correlates. Journal of Pharmacology and Experimental Therapeutics, 242, 917–926

    PubMed  CAS  Google Scholar 

  • Segal, D. S., & Kuczenski, R. (1992). In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment. Brain Research,571, 330–337

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, W. J., & Kehoe, P. (1995). Effect of isolation conditions on brain regional enkephalin and 13-endorphin and vocalizations in 10-day-old rat pups. Behavioral Neuroscience, 109, 117–122

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, W. J., Kehoe, P., Antolik, C., Norrholm, S., Geary, M., & Fong, D. (1998). Altered stress-induced dopamine release in adult rats previously isolated as neonates. Society for Neuroscience Abstracts, 24, 451

    Google Scholar 

  • Shors, T. J., & Mathew, P. R. (1998). NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learning and Memory, 5, 220–230

    PubMed  CAS  Google Scholar 

  • Shors, T. J., & Servatius, R. J. (1995). Stress-induced sensitization and facilitated learning require NMDA receptor activation. Neuroreport, 6, 677–680

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. L., Copian, J. D., Trost, R. C., Scharf, B. A., & Rosenblum, L. A. (1997). Neurobiological alterations in adult nonhuman primates exposed to unpredictable early rearing. Relevance to posttraumatic stress disorder. Annals of the New York Academy of Sciences,821, 545–548

    Article  PubMed  CAS  Google Scholar 

  • Smotherman, W. P., Bell, R. W., Starzec, J., Elias, J., & Zachman, T. A. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice. Behavioral Biology, 12, 55

    Article  PubMed  CAS  Google Scholar 

  • Sorg, B. A., & Kalivas, P. W. (1991). Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Research,559, 29–36

    Article  PubMed  CAS  Google Scholar 

  • Sorg, B. A., & Kalivas, P. W. (1993). Effects of cocaine and footshock stress on extracellular levels in the medial prefrontal cortex. Neuroscience,53, 695–703

    Article  PubMed  CAS  Google Scholar 

  • Spear, L. P., Shalaby, I. A., & Brick, J. (1980). Chronic administration of haloperidol during development: Behavioral and psychopharmacological effects. Psychopharmacology, 70, 47–58

    Article  PubMed  CAS  Google Scholar 

  • Spitz, R. A. (1945). Hospitalism. Psychoanalytic study of the child, 1, 53–74

    PubMed  CAS  Google Scholar 

  • Spitz, R. A. (1946). Hospitalism: A follow-up report on investigation described in Volume 1, 1945. Psychoanalytic Study of the Child 2, 113–117

    PubMed  CAS  Google Scholar 

  • Spitz, R. A., & Wolf, K. A. (1946). Anaclitic depression: An inquiry into the genesis of psychiatric conditions in early childhood. Psychoanalytic Study of the Chilä, 2, 313–342

    CAS  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386

    Article  Google Scholar 

  • Sunanda Rao, M. S., & Raju, T. R. (1995). Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons—A quantitative study. Brain Research, 694, 312–317

    Article  Google Scholar 

  • Suomi, S. J. (1991). Early stress and adult emotional reactivity in rhesus monkeys. Ciba Foundation Symposium; New Series,156, 171–188

    CAS  Google Scholar 

  • Svedsen, E, Tjolsen, A., Rygh, L.J., & Hole, K. (1999), Expression of long-term potentiation in single wide dynamic range neurons in the rat is sensitive to blockade of glutamate receptors. Neuroscience Letters, 259, 25–28

    Article  Google Scholar 

  • Takahashi, L. L. (1998). Prenatal stress: Consequences of glucocorticoid on hippocampal development and function. International Journal of Developmental Neuroscience, 16, 199–207

    Article  PubMed  CAS  Google Scholar 

  • Tamborski, A., Lucot, J. B., &Hennessy, M. B. (1990). Central dopamine turnover in guinea pigs during separation from their mothers in a novel environment. Behavioral Neuroscience, 104, 607–611

    Article  PubMed  CAS  Google Scholar 

  • Teicher, M. H., Ito, Y., Glod, C. A., Anderson, S. L., Dumont, N., & Ackerman, E. (1997). Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Annals of the New York Academy of Sciences, 821, 160–175

    Article  CAS  Google Scholar 

  • Tonkiss, J., & Galler, J. R. (1990). Prenatal protein malnutrition and working memory performance in adult rats. Behavioral Brain Research, 40, 95–107

    Article  CAS  Google Scholar 

  • Unis, A. S. (1995). Developmental molecular psychopharmacology in early-onset psychiatric disorder: From models to mechanisms. Child and Adolescent Psychiatric Clinics of North America, 4, 41–57

    Google Scholar 

  • Unis, A. S., Roberson, M. D., Robinette, R., Ha, J., & Dorsa, D. M. (1998). Ontogeny of human brain dopamine receptors I. Differential expression of [3H)SCH23390 and [3H] YM09151–2 specific binding. Developmental Brain Research, 106, 109–117

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. Y., Yeung, J. M., &Friedman, E. (1995). Prenatal cocaine exposure selectively reduces mesocortical dopamine release. Journal of Pharmacology and Experimental Therapeutics, 273, 492–498

    PubMed  CAS  Google Scholar 

  • Wang, X.-H., Levitt, P., Grayson, D. R., & Murphy, E. H. (1996). Intrauterine cocaine exposure of rabbits: Persistent elevation of GABA immunoreactive neurons in anterior cingulate cortex but not in visual cortex. Brain Research, 689, 32–46

    Article  Google Scholar 

  • Weiner, I., Feldon, J., & Ziv-Harris, D. (1987). Early handling and latent inhibition in the conditioned suppression paradigm. Developmental Psychobiology, 20, 233–240

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 28, 1029–1040

    PubMed  CAS  Google Scholar 

  • Wilkins, A. S., Logan, M., & Kehoe, P. (1998). Postnatal pup brain dopamine depletion inhibits maternal behavior. Pharmacology,Biochemistry, and Behavior,58, 867–873

    Google Scholar 

  • Whitaker-Azmitia, P. M., & Azmitia, E. C. (1986). Autoregulation of fetal serotonergic neuronal development: Role of high affinity serotonin receptors. Neuroscience Letters, 67, 307–312

    Article  PubMed  CAS  Google Scholar 

  • Wigstrom, H., & Gustafsson, B. (1984). A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro. Neuroscience Letters, 44, 327–332

    Article  PubMed  CAS  Google Scholar 

  • Wolff, P. H., & Fesseha, G. (1998). The orphans of Eritrea: Are orphanages part of the problem or part of the solution? American Journal of Psychiatry, 155, 1319–1324

    PubMed  CAS  Google Scholar 

  • Zagon, I. S., & McLaughlin, P. J. (1985). Opioid antagonist-induced regulation of organ development. Physiology and Behavior, 34, 507–511

    Article  PubMed  CAS  Google Scholar 

  • Zagon, I. S., & McLaughlin, P. J. (1986). Opioid antagonist (naltrexone) modulation of cerebellar development: Histological and morphometric studies. Journal of Neuroscience, 6, 1424–1432

    PubMed  CAS  Google Scholar 

  • Zimmerberg, B., & Shartrand, A. M. (1992). Temperature-dependent effects of maternal separation on growth, activity, and amphetamine sensitivity in the rat. Developmental Psychobiology, 25, 213–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kehoe, P., Shoemaker, W. (2001). Infant Stress, Neuroplasticity, and Behavior. In: Blass, E.M. (eds) Developmental Psychobiology. Handbook of Behavioral Neurobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1209-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1209-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5442-0

  • Online ISBN: 978-1-4615-1209-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics