Advertisement

Analytical Description of the Short-Range Order in Alloys with Many-Body Atomic Interactions

  • R. V. Chepulskii

Abstract

The high-accuracy ring approximation elaborated in [R. V. Chepulskii and V. N. Bugaev, J. Phys. Condens. Matter 10, 7309; 7327 (1998)] by use of the thermodynamic fluctuation method in the context of the modified thermodynamic perturbation theory as applied to the lattice gas model is generalized for calculation of the short-range order (SRO) parameters and their Fourier transform in disordered binary alloys with many-body atomic interactions of arbitrary order and effective radius of action. On the basis of the comparison with the Monte Carlo simulation data, the numerical accuracy of the derived approximation is studied. It is demonstrated that the temperature dependence of a position in reciprocal space of the SRO Fourier transform’s maximums is correctly described within this approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. V. Chepulskii, Analytical description of the short-range order in alloys with many-body atomic interactions, J. Phys.: Condens. Matter 10, 1505 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    M. A. Krivoglaz, Diffuse Scattering of X-rays and Ther- mal Neutrons by Fluctuational Inhomogeneities of Imperfect Crystals (Springer-Verlag, Berlin-Heidelberg, 1996).CrossRefGoogle Scholar
  3. [3]
    F. Solal, R. Caudron, F. Ducastelle, A. Finel and A. Loiseau, Insitu Diffuse Neutron-Scattering On Disordered Pd3V and Ni3V, Phys. Rev. Lett. 58, 2245 (1987).ADSCrossRefGoogle Scholar
  4. [4]
    R. V. Chepulskii and V. N. Bugaev, Analytical description of temperature dependence of a position in reciprocal space of the short-range order Fourier transform ’s maximum in alloys , J. Phys. Chem. Solids 59, 1469 (1998).ADSCrossRefGoogle Scholar
  5. [5]
    V. V. Ozoliņš, C. Wolverton and A. Zunger, Anomalous temperature dependence of the X-ray diffuse scattering intensity of Cu3Au , Phys. Rev. Lett. 79, 955 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    C. Wolverton, V. V. Ozoliņš and A. Zunger, First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au , Phys. Rev. B 57, 4332 (1998).ADSGoogle Scholar
  7. [7]
    V. V. Ozoliņš, C. Wolverton and A. Zunger, Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , Phys. Rev. B 57, 6427 (1998).ADSGoogle Scholar
  8. [8]
    I. Tsatskis, Quadratic short-range order corrections to the meanfield free energy, J. Phys.: Condens. Matter 10, L145 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    I. Tsatskis and E. K. H. Salje, Short-range order in a steady state of irradiated Cu-Pd alloys: comparison with fluctuations at thermal equilibrium, J. Phys.: Condens. Matter 10, 3791 (1998).ADSCrossRefGoogle Scholar
  10. [10]
    D. Le Bolloc’h, R. Caudron and A. Finel, Experimental and theoretical study of the temperature and concentration dependence of the short-range order in Pt-V alloys , Phys. Rev. B 57, 2801 (1998).ADSGoogle Scholar
  11. [11]
    I. Tsatskis, Origin of the anomaly in diffuse scattering from disordered Pt- V alloys, Phys. Lett. A 241, 110 (1998).ADSGoogle Scholar
  12. [12]
    I. Tsatskis, Coalescence of the Fermi surface related diffuse intensity peaks in disordered alloys , Phil. Mag. Lett. 78, 403 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    C. Wolverton and A. Zunger, Short-Range and Long-Range Order of the Binary Madelung Lattice, Phys. Rev. B 51, 6876 (1995).ADSGoogle Scholar
  14. [14]
    R. V. Chepulskii and V. N. Bugaev, Analytical methods for calculation of the short-range order in alloys: I. General theory, J. Phys.: Condens. Matter 10, 7309; 7327 (1998).Google Scholar
  15. [15]
    R. V. Chepulskii, Analytical methods for calculation of the short-range order in alloys: I. General theory , J. Phys. Chem. Solids 59, 1473 (1998).ADSCrossRefGoogle Scholar
  16. [16]
    R. V. Chepulskii, The effect of nonpair atomic interactions on the short-range order in disordered alloys, J. Phys.: Condens. Matter 11, 8645; 8661 (1999).ADSCrossRefGoogle Scholar
  17. [17]
    R. Brout, Phase Transitions (Benjamin, New York, 1965).Google Scholar
  18. [18]
    A. G. Khachaturyan, , J. Prog. Mat. Sci. 22, 1 (1978).ADSCrossRefGoogle Scholar
  19. [19]
    D. de Fontaine, , Solid State Physics 34, 73 (1979).CrossRefGoogle Scholar
  20. [20]
    A. G. Khachaturyan, Theory of Structural Transformations in Solids (John Wiley & Sons, New York, 1983).Google Scholar
  21. [21]
    P. C. Clapp and S. C. Moss, Correlation Functions of Disordered Binary Alloys. I-, Phys. Rev. 142, 418 (1966); ibid. 171, 754 (1968).ADSCrossRefGoogle Scholar
  22. [22]
    Z. W. Lu and A. Zunger, Unequal Wave Vectors in Short-Range Versus Long-Range Ordering in Intermetallic Compounds , Phys. Rev. B 50, 6626 (1994).ADSGoogle Scholar
  23. [23]
    C. Wolverton and A. Zunger, First-Principles Theory of Short-Range Order, Electronic Excitations and Spin Polarization in Ni- V and Pd-V Alloys , Phys. Rev. B 52, 8813 (1995).ADSGoogle Scholar
  24. [24]
    V. I. Tokar, I. V. Masanskii and T. A. Grishchenko, A Simple and Accurate Theory of Short-Range Order in Alloys, J. Phys.: Condens. Matter 2, 10199 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    I. V. Masanskii, V. I. Tokar and T. A. Grishchenko, Pair Interactions in Alloys Evaluated From Diffuse-Scattering Data, Phys. Rev. B 44, 4647 (1991).ADSGoogle Scholar
  26. [26]
    V. I. Tokar, New Ward-Takahashi Identities in Statistical Mechanics of Many- Fermion Systems , Phys. Lett. A 110, 453 (1985).MathSciNetADSGoogle Scholar
  27. [27]
    F. Ducastelle and F. Gautier, Generalized Perturbation-Theory in Disordered Transitional Alloys , J. Phys. F: Metal Phys. 6, 2039 (1976).ADSCrossRefGoogle Scholar
  28. [28]
    F. Ducastelle, Order and Phase Stability in Alloys (Elsevier, New York, 1991).Google Scholar
  29. [29]
    A. Gonis, X. G. Zhang, A. J. Freeman, P.E.A Turchi, G.M. Stocks, and D. M. Nicholson Configurational Energies and Effective Cluster Interactions in Substitutionally Disordered Binary-Alloys, Phys. Rev. B 36, 4630 (1987).ADSGoogle Scholar
  30. [30]
    P. E. A. Turchi, G. M. Stocks, W. H. Butler, D. M. Nicholson, and A. Gonis 1st-Principles Study of Ordering Properties of Substitutional Alloys Using the Generalized Perturbation Method, Phys. Rev. B 37, 5982 (1988).ADSGoogle Scholar
  31. [31]
    J. W. D. Connolly and A. R. Williams, Density-Functional Theory Applied to Phase-Transformations in Transition-Metal Alloys, Phys. Rev. B 27, 5169 (1983).ADSGoogle Scholar
  32. [32]
    A. Zunger, in Statics and Dynamics of Alloy Phase Transformations, ed. P. E. A. Turchi and A. Gonis, NATO ASI Series (Plenum, New York, 1994) p. 361.Google Scholar
  33. [33]
    B. L. Gyorffy and G. M. Stocks, Concentration Waves and Fermi Surfaces in Random Metallic Alloys, Phys. Rev. Lett. 50, 374 (1983).ADSCrossRefGoogle Scholar
  34. [34]
    G. M. Stocks et al., in Statics and Dynamics of Alloy Phase Transformations, ed P. E. A. Turchi and A. Gonis, NATO ASI Series (Plenum, New York, 1994) p. 305.Google Scholar
  35. [35]
    J. B. Staunton, D. D. Johnson ,and F. J. Pinski, Compositional Short-Range Ordering in Metallic Alloys - Band- Filling, Charge-Transfer, and Size Effects From a 1st- Principles All-Electron Landau-Type Theory, Phys. Rev. B 50, 1450 (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • R. V. Chepulskii
    • 1
  1. 1.Department of Solid State TheoryInstitute for Metal Physics, N. A. S. U.Kyiv-142Ukraine

Personalised recommendations