Ab Initio Study of Vacancies in Metals and Compounds

  • P. A. Korzhavyi
  • I. A. Abrikosov
  • B. Johansson


The results of ab initio calculations of the vacancy formation energies in all the transition and noble metals are presented. We also report on the formation energies of native point defects in the NiAl intermetallic compound. The calculations are performed within the locally self-consistent Green’s function method and include multipole electrostatic corrections to the atomic sphere approximation. The results are in excellent agreement with experiment and existing full-potential calculations. We also perform a qualitative analysis of constitutional and thermal defects in NiAl within the Wagner-Schottky model of a lattice gas of non-interacting defects.


Point Defect Formation Energy Vacancy Formation Energy Defect Formation Energy Thermal Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. H. Dederichs, B. Drittler, R. Zeller, in Application of Multiple Scattering theory to Materials Science, edited by W. H. Butler et al. MRS Symposia Proceedings No. 253 (Mater. Res. Soc. Proc.Google Scholar
  2. [2]
    P. A. Korzhavyi, I. A. Abrikosov, B. Johansson, A. V. Ruban, and H. L. Skriver, First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B 59, 11693 (1999).ADSGoogle Scholar
  3. [3]
    C. L. Fu, Y.-Y. Ye, M. H. Yoo, and K. M. Ho, Equilibrium-Point Defects in Intermetallics with the B2 Structure - Nial And FeAl. Phys. Rev. B 48, 6712 (1993).ADSGoogle Scholar
  4. [4]
    B. Meyer and M Fähnle, Atomic defects in the ordered compound B2-NiAl: A combination of ab initio electron theory and statistical mechanics Phys. Rev. B 59, 6072 (1999).ADSGoogle Scholar
  5. [5]
    P. A. Korzhavyi, I. A. Abrikosov, and B. Johansson,in High-Temperature Ordered Intermetallic Alloys VIII, edited by E. P. George, M. Yamaguchi, and M. J. Mills (Mater. Res. Soc. Proc. 552, Pittsburgh, 1999), in press.Google Scholar
  6. [6]
    R. O. Jones, O.Gunnarsson, The Density Functional Formalism, its Applications And Prospects. Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  7. [7]
    C. Wagner and W. Schottky, Z. Physik. Chem. B 11, 163 (1930).Google Scholar
  8. [8]
    I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Order-N Green’s function technique for local environment effects in alloys. Phys. Rev. Lett. 76, 4203 (1996).ADSCrossRefGoogle Scholar
  9. [9]
    I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Locally self-consistent Green’s function approach to the electronic structure problem.Phys. Rev. B 56, 9319 (1997).ADSGoogle Scholar
  10. [10]
    H. L. Skriver and N. M. Rosengaard,Abinitio Work Function of Elemental Metals. Phys. Rev. B 46, 7157 (1992).ADSGoogle Scholar
  11. [11]
    A. V. Ruban, H. L. Skriver, and J. Nørskov, Surface segregation energies in transition-metal alloys. Phys. Rev. B 59, 15990 (1999).ADSGoogle Scholar
  12. [12]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  13. [13]
    P. Ehrhart, P. Jung, H. Schultz, and H. Ullmaier, in Atomic Defects in Metals,edited by H. Ullmaier, Landolt-Börnstein, New Series, Group III, Vol. 25 (Springer-Verlag, Berlin, 1991).Google Scholar
  14. [14]
    E.-T. Henig and H. L. Lukas, Calorimetric Determination of Enthalpy of Formation and Description of Defect Structure of Ordered Beta-Phase (Ni, Cu)l-X AlX . Z. Metallkd. 66, 98 (1975).Google Scholar
  15. [15]
    A. J. Bradley and A. Taylor, Proc. R. Soc. A 159, 56 (1937).ADSGoogle Scholar
  16. [16]
    A. Taylor and N. J. Doyle, J. Appl. Crystallogr. 5, 201 (1972).CrossRefGoogle Scholar
  17. [17]
    Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl .1. Point defect energetics. Philos. Mag. A 75, 169 (1997).ADSGoogle Scholar
  18. [18]
    P. A. Korzhavyi, A. V. Ruban, A. Y. Lozovoi, Yu. Kh. Vekilov, I. A. Abrikosov, and B. Johansson, (to be published).Google Scholar
  19. [19]
    M. Hagen and M. W. Finnis, Point defects and chemical potentials in ordered alloys. Philos. Mag. A 77, 447 (1998).ADSGoogle Scholar
  20. [20]
    A. A. Smirnov, Soviet Physics - Doklady 36, 479 (1991)ADSGoogle Scholar
  21. [20a]
    A. A. Smirnov,Phys. Metals 12, 377 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • P. A. Korzhavyi
    • 1
  • I. A. Abrikosov
    • 1
  • B. Johansson
    • 1
  1. 1.Condensed Matter Theory Group, Physics DepartmentUppsala UniversityUppsalaSweden

Personalised recommendations