Advertisement

The Magnetite (001) Surface: Insights from Molecular Dynamics Calculations

  • James R. Rustad
  • Evgeny Wasserman
  • Andrew R. Felmy

Abstract

A classical polarizable potential model is used in a molecular dynamics model of the magnetite (001) surface. The model, previously applied to the tetrahedral, or “A” termination of magnetite (001) is here applied to the octahedral or “B” termination, as well as to the hydroxylation of both the “A” and “B” termination. Surface relaxations for the “B” terminated surface are small, and consistent with the observed (√2×√2)R45 cell observed in LEED experiments. Additionally, it is shown that the relaxation of a tetrahedral defect on the “B” terminated surface does not give rise to the same relaxation mechanism as that calculated for the tetrahedral sites on the “A” surface. The lack of a “dimer” forming at the defect site is consistent with recent STM studies. Calculations on charge-ordered magnetite slabs indicate that, within the context of the ionic model used here, the surface energy of the “A” termination of magnetite is lower than that of the “B” termination over a wide range of oxygen ftigacities. Hydr xylation has a negligible effect on the relative energies of the “A” and “B” surfaces, however, the large gain in energy associated with tetrahedral ion relaxation on the “A” surface could explain the lack of two high temperature peaks expected for successive removal of adsorbing waters from the same tetrahedral site.

Keywords

Octahedral Site Oxygen Fugacity Tetrahedral Site Ferric Oxide Ionic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Chambers and S. A. Joyce, “Growth of beta-MnO2 films on TiO2(l10) by oxygen plasma assisted molecular beam epitaxy” Surface Science Letters 420 (1999) 111.ADSCrossRefGoogle Scholar
  2. [2]
    F. C. Voogt, “N02-assisted molecular beam epitaxy of iron oxide films,”. Ph.D. Thesis, Gronigen: Rijkuniversiteit Gronigent, 1998, pp. 158.Google Scholar
  3. [3]
    Y. J. Kim, Y. Gao, and S. A. Chambers, Selective growth and characterization of pure, epitaxial alpha-Fe2O3(0001) and Fe3O4 (001) films by plasma-assisted molecular beam epitaxy” Surf. Sci. 371 (1997) 358.ADSCrossRefGoogle Scholar
  4. [4]
    B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, “Surface reconstruction of Fe3O4 (001)” Surf. Sci. 448 (2000)49.ADSCrossRefGoogle Scholar
  5. [5]
    J. W. Halley, J. R. Rustad, and A. Rahman, “A Polarizable, Dissociating Molecular-Dynamics Model for Liquid Water” J. Chem. Phys. 98 (1993) 4110.ADSCrossRefGoogle Scholar
  6. [6]
    F. H. Stillinger and C. W. David, J. Chem. Phys. 69 (1978) 1473.ADSCrossRefGoogle Scholar
  7. [7]
    L. A. Curtiss, J. W. Halley, J. Hautman, and A. Rahman, J. Chem. Phys. 86 (1987) 2319.ADSCrossRefGoogle Scholar
  8. [8]
    J. R. Rustad, B. P. Hay, and J. W. Halley, “Molecular-Dynamics Simulation Of Iron(Iii) And Its Hydrolysis Products In Aqueous-Solution” J. Chem. Phys. 102 (1995) 427.ADSCrossRefGoogle Scholar
  9. [9]
    J. R. Rustad, A. R. Felmy, and B. P. Hay, “Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models” Geochim. et Cosmochim. Acta 60 (1996) 1553.ADSCrossRefGoogle Scholar
  10. [10]
    E. Wasserman, J. R. Rustad, A.R. Felmy, B. P. Hay, and J. W. Halley, “Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (00l)surfaces of alpha-Fe2O3” Surface Science 385 (1997) 217.ADSCrossRefGoogle Scholar
  11. [11]
    M. A. Henderson, S. A. Joyce, and J. R. Rustad, “Interaction of water with the (lxl) and (2x1) surfaces of alpha-Fe2O3(012)” Surface Science 417 (1998) 66.ADSCrossRefGoogle Scholar
  12. [12]
    J. R. Rustad, E. Wasserman, and A. R. Felmy, “Molecular modeling of the surface charging of hematite - II. Optimal proton distribution and simulation of surface charge versus pH relationships” Surface Science 424 (1999) 28.ADSCrossRefGoogle Scholar
  13. [13]
    J. R. Rustad, A. R. Felmy, and B. P. Hay, “Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models: Geochim. et Cosmochim. Acta 60 (1996) 1563.ADSCrossRefGoogle Scholar
  14. [14]
    A. Felmy and J. Rustad, “Molecular statics calculations of proton binding to goethite surfaces: Thermodynamic modeling of the surface charging and protonation of goethite in aqueous solution” Geochimica et Cosmochimica Acta 62 (1998) 25.ADSCrossRefGoogle Scholar
  15. [15]
    J. K. Beattie, S. P. Best, B. W. Skelton, and A. H. White, “Structural Studies on the Cesium Alums, CSMIII[S04]2l2H2O” J. Chem. Soc. Dalton Transactions (1981) 2105.Google Scholar
  16. [16]
    R. Akesson, L. G. M. Pettersson, M. Sandstrom, and U. Wahlgren, “Ligand-Field Effects in the Hydrated Divalent and Trivalent Metal-Ions of the First and 2nd Transition Periods” J. Am. Chem. Soc, 116 (1994) 8691.CrossRefGoogle Scholar
  17. [17]
    J. R. Rustad, E. Wasserman, and A. R. Felmy, “A molecular dynamics investigation of surface reconstruction on magnetite (001)” Surface Science 432 (1999) L583CrossRefGoogle Scholar
  18. [18]
    W. C. Hamilton, Physical Review 110 (1958) 1050.ADSCrossRefGoogle Scholar
  19. [19]
    X.-G. Wang, W. Weiss, S. K. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlogl, and M. Scheffler, “The hematite (alpha-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry” Phys. Rev. Lett. 81 (1998) 1038.ADSCrossRefGoogle Scholar
  20. [20]
    R. M. Garrels and C. L. Christ, Minerals, Solutions, and Equilibria. San Francisco: Freeman, Cooper & Company, 1965.Google Scholar
  21. [21]
    C. H. F. Peden, G. S. Herman, I. Z. Ismagilov, B. D. Kay, M. A. Henderson, Y. J. Kim, and S. A. Chambers, “Model catalyst studies with single crystals and epitaxial thin oxide films ” Catalysis Today 51 (1999) 513.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • James R. Rustad
    • 1
  • Evgeny Wasserman
    • 1
  • Andrew R. Felmy
    • 1
  1. 1.W. R. Wiley Environmental Molecular Science LaboratoryPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations