Advertisement

Bond-Order Potentials for Transition Metals Based Binary Alloys: Ti-Al and Mo-Si Alloys

  • S. Znam
  • D. Nguyen-Manh
  • D. G. Pettifor
  • V. Vitek

Abstract

Intermetallic compounds have been studied very extensively in the last two decades since they are considered excellent materials for high-temperature applications (for recent reviews see Liu et al. 1992; Westbrook and Fleischer 1995; Stoloff and Sika 1996). The main reasons are that they tend to be intrinsically very strong, possess high elastic moduli and have low self-diffusion coefficients and thus a high creep strength as well as corrosion resistance. The intermetallics that have been in use for a long time are alloys of Ni and Al, such as superalloys containing Ni3Al particles (see, for example, Nabarro 1994; Stoloff and Liu 1996) and NiAl based alloys (see, for example, Darolia, et al. 1992; Noebe, et al. 1996) as well as Fe-Al alloys (Stoloff 1998). In recent years the development and investigation of new intermetallics that are believed to supersede the Ni-Al and Fe-Al based alloys has been pursued very actively. The most interesting are compounds with higher melting temperatures than Ni-Al alloys and with low density combined with high strength and modulus that give rise to attractive specific properties (property divided by density).

Keywords

TiAl Alloy Environmental Dependence Transformation Path High Creep Strength Cauchy Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackland, G. J., Tichy, G., Vitek, V. and Finnis, M. W., 1987, Simple N-Body Potentials For the Noble- Metals and Nickel, Philos. Mag. A 56:735.ADSCrossRefGoogle Scholar
  2. Andersen, O. K. and Jepsen, O., 1984, Explicit, lst-Principles Tight-Binding Theory, Phys. Rev. Lett. 53:2571.ADSCrossRefGoogle Scholar
  3. Andersen, O. K., Jepsen, O. and Glötzel, D., 1985, in Highlights of Condensed Matter Theory, F. Bassani, F. Fumi and M. P. Tosi, ed., North Holland, Amsterdam, p. 59.Google Scholar
  4. Andersen, O. K., Jepsen, O. and Krier, G., 1994, in Lectures on Methods of Electronic Structure Calculations, V. Kumar et al., ed., World Scientific, Singapore, p. 63.Google Scholar
  5. Aoki, M., 1993, Rapidly Convergent Bond Order Expansion For Atomistic Simulations, Phys. Rev. Lett. 71:3842.ADSCrossRefGoogle Scholar
  6. Aoki, M. and Pettifor, D. G., 1993, in Physics of Transition Metals, P. M. Oppeneer and J. Kübler, ed.,World Scientific, Singapore, p. 299.Google Scholar
  7. Blaha, P., Schwartz, K., Sorantin, P. and Trickey, S. B., 1990, Full-Potential, Linearized Augmented Plane-Wave Programs For Crystalline Systems, Comp. Phys. Commun. 59:399.ADSCrossRefGoogle Scholar
  8. Bowler, D. R., Aoki, M., Goringe, C. M., Horsfield, A. P. and Pettifor, D. G., 1997, A comparison of linear scaling tight-binding methods, Modelling and Simulation in Mat. Sci. Eng. 5:199.ADSCrossRefGoogle Scholar
  9. Chu, F., Thoma, D. J., McClellan, K. J. and Peralta, P., 1999, Mo 5Si3 single crystals: physical properties and mechanical behavior, Mat. Sci. Eng. A 261:44.CrossRefGoogle Scholar
  10. Darolia, R., Lahrman, D. F., Field, R. D., Dobbs, J. R., Chang, K. M., Goldman, E. H. and Konitzer, D. G., 1992, in Ordered Intermetallics - Physical Metallurgy and Mechanical Behaviour, C. T. Liu, R. W. Cahn and G. Sauthoff, ed., Kluwer Academic Publishers, Dodrecht, p. 679.CrossRefGoogle Scholar
  11. Daw, M. S. and Baskes, M. I., 1984, Embedded-Atom Method - Derivation and Application to Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B 29:6443.ADSCrossRefGoogle Scholar
  12. Dimiduk, D. M., 1999, Gamma titanium aluminide alloys - an assessment within the competition of aerospace structural materials, Mat. Sci. Eng. A 263:281.CrossRefGoogle Scholar
  13. Duesbery, M. S. and Richardson, G. Y., 1991, CRC Critical Reviews in Solid State and Materials Science 17:1.ADSCrossRefGoogle Scholar
  14. Ehmann, J. and Fähnle, M., 1998, Generalized stacking-fault energies for TiAl: mechanical instability of the (111) antiphase boundary, Philos. Mag. A 77:701.ADSGoogle Scholar
  15. Feynman, R. P., 1939, Phys. Rev. 56:340.ADSzbMATHCrossRefGoogle Scholar
  16. Finnis, M. W. and Sinclair, J. E., 1984, A Simple Empirical N-Body Potential For Transition-Metals, Philos. Mag. A 50:45.ADSGoogle Scholar
  17. Girshick, A., Bratkovsky, A. M., Pettifor, D. G. and Vitek, V., 1998, Philos. Mag. A 77:981.ADSCrossRefGoogle Scholar
  18. Goodwin, L., Skinner, A. J. and Pettifor, D. G., 1989, Generating Transferable Tight-Binding Parameters - Application to Silicon, Europhys. Lett. 9:701.ADSCrossRefGoogle Scholar
  19. Haas, H., Wang, C. Z., Fähnle, M., Elsässer, C. and Ho, K. M., 1998a, in Tight-Binding Approach to Computational Materials Science, P. E. A. Turchi, A. Gonis and L. Colombo, ed., Vol. 491, Materials Research Society, Pittsburgh, p. 327.Google Scholar
  20. Haas, H., Wang, C. Z., Fähnle, M., Elsässer, C. and Ho, K. M., 1998b, Environment-dependent tight-binding model for molybdenum, Phys. Rev. B 57:1461.ADSCrossRefGoogle Scholar
  21. Haydock, R., 1980, in Solid State Physics, H. Ehrenreich and D. Turnbull, ed., Vol. 35, Academic Press, New York, p. 216.Google Scholar
  22. Hellmann, H., 1937, Einführung in die Quantenchemie, Deuticke, Leipzig.Google Scholar
  23. Horsfield, A. P. and Bratkovsky, A. M., 1996, O(N) tight-binding methods with finite electronic temperature, Phys. Rev. B 53:15381.CrossRefGoogle Scholar
  24. Horsfield, A. P., Bratkovsky, A. M., Fearn, M., Pettifor, D. G. and Aoki, M., 1996a, Bond-order potentials: Theory and implementa-tion, Phys. Rev. B 53: 12694.CrossRefGoogle Scholar
  25. Horsfield, A. P., Bratkovsky, A. M., Pettifor, D. G. and Aoki, M., 1996b, Bond-order potential and cluster recursion for the description of chemical bonds: Efficient real-space methods for tight- binding molecular dynamics, Phys. Rev. B 53:1656.ADSCrossRefGoogle Scholar
  26. Huang, S. C. and Chestnutt, J. C., 1995, in Intermetallic Compounds-Principles and Practice, J. H. Westbrook and R. L. Fleischer, ed., Vol. 2, John Wiley & Sons, New York, p. 73.Google Scholar
  27. Ito, K., Matsuda, K., Shirai, Y., Inui, H. and Yamaguchi, M., 1999, Brittle-ductile behavior of single crystals of MoSi 2, Mat. Sci. Eng. A 261:99.CrossRefGoogle Scholar
  28. Ito, K., Yano, T., Nakamoto, T., Moriwaki, M., Inui, H. and Yamaguchi, M., 1997, Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-based alloys, Prog. Mater. Sci. 42:193.CrossRefGoogle Scholar
  29. Kim, Y. W., 1998, Strength and ductility in TiAl alloys, Intermetallics 6:623.CrossRefGoogle Scholar
  30. Liu, C.T., Cahn, R.W. and Sauthoff, G., ed., 1992, Ordered Intermetallics - Physical Metallurgy and Mechanical Behaviour, Kluwer Academic Publishers, Dodrecht.Google Scholar
  31. Lanczos, C., 1950, J. Res. Natl. Bur. Stand. 45:225.MathSciNetCrossRefGoogle Scholar
  32. Milstein, F., Fang, H. E. and Marschall, J., 1994, Mechanics and Energetics of the Bain Transformation, Philos. Mag. A 70:621.ADSCrossRefGoogle Scholar
  33. Mitchell, T. E. and Misra, A., 1999, Structure and mechanical properties of (Mo, Re)Si-2 alloys, Mat. Sci. Eng. A 261:106.CrossRefGoogle Scholar
  34. Nabarro, F. R. N., 1994, The Superiority of Superalloys, Mat. Sci. Eng. A 184:167.CrossRefGoogle Scholar
  35. Nguyen-Manh, D., Bratkovsky, A. M. and Pettifor, D. G., 1995, Quantum-Mechanical Predictions In Intermetallics Modeling, Phil. Trans. Roy. Soc. London A 351:529.ADSCrossRefGoogle Scholar
  36. Nguyen-Manh, D. and Pettifor, D. G., 1999a, Electronic structure, phase stability and elastic moduli of AB transition metal aluminides, Intermetallics 7:1095.CrossRefGoogle Scholar
  37. Nguyen-Manh D. and Pettifor D.G., 1999b, in Gamma Titanium Aluminides 1999, Kim, Y-W., Dimiduk, D.M. and Loretto, M.H., ed., TMS Publication, p. 175.Google Scholar
  38. Nguyen-Manh, D., Pettifor, D. G. and Vitek, V., 2000, to be published.Google Scholar
  39. Nguyen-Manh, D., Pettifor, D. G., Znam, S. and Vitek, V., 1998, in Tight-Binding Approach to Computational Materials Science, P. E. A. Turchi, A. Gonis and L. Colombo, ed., Vol. 491, Materials Research Society, Pittsburgh, p. 353.Google Scholar
  40. Nguyen-Manh, D., Pettifor, D. G., Shao, G., Miodownik, A. P. and Pasturel, A., 1996, Metastability of the omega-phase in transition-metal aluminides: First-principles structural predictions, Philos. Mag. A 74:1385.ADSCrossRefGoogle Scholar
  41. Noebe, R. D., Bowman, R. R. and Nathal, M. V., 1996, in Physical Metallurgy and Processing of Intermetallic Compounds, N. S. Stoloff and V. K. Sikka, ed., Chapman & Hall, New York, p. 212.CrossRefGoogle Scholar
  42. Nowak, H. J., Andersen, O. K., Fujiwara, T., Jepsen, O. and Vargas, P., 1991, Electronic-Structure Calculations For Amorphous Solids Using the Recursion Method and Linear Muffin-Tin Orbitals - Application to Fe 8 0B 2 0, Phys. Rev. B 44:3577.ADSCrossRefGoogle Scholar
  43. Paidar, V., Wang, L. G., Sob, M. and Vitek, V., 1999, A study of the applicability of many-body central force potentials in NiAl and TiAl, Modelling and Simulation in Mat. Sci. Eng. 7:369.ADSCrossRefGoogle Scholar
  44. Pettifor, D. G., 1978, Theory of Energy-Bands and Related Properties of 4d Transition- Metals .3. S and D Contributions to Equation of State, J. Phys. F: Metal Phys. 8: 219.ADSCrossRefGoogle Scholar
  45. Pettifor, D. G., 1989, New Many-Body Potential For the Bond Order Phys. Rev. Lett. 63:2480.ADSCrossRefGoogle Scholar
  46. Pettifor, D. G., 1995, Bonding and Structure of Molecules and Solids, Oxford University Press, Oxford.Google Scholar
  47. Pettifor, D. G. and Aoki, M., 1991, Bonding and Structure of Intermetallics - a New Bond Order Potential, Phil. Trans. Roy. Soc. London A 334:439.ADSCrossRefGoogle Scholar
  48. Siegl, R., Vitek, V., Inui, H., Kishida, K. and Yamaguchi, M., 1997, Directional bonding and asymmetry of interfacial structure in intermetallic TiAl: Combined theoretical and electron microscopy study, Philos. Mag. A 75:1447.ADSCrossRefGoogle Scholar
  49. Simmons, J. P., Rao, S. I. and Dimiduk, D. M., 1997, Atomistics simulations of structures and properties of 1/2 >110< dislocations using three different embedded-atom method potentials fit to gamma-TiAl, Philos. Mag. A 75:1299.ADSCrossRefGoogle Scholar
  50. Skriver, H. L., 1984, The LMTO method, Springer, New York.CrossRefGoogle Scholar
  51. Sob, M. and Vitek, V., 1996, in Stability of Materials, NATO Advanced Science Institute, Series B: Physics, Vol. 355, A. Gonis, P. E. A. Turchi and J. Kudrnovsky, ed., Plenum Press, New York, p. 449.Google Scholar
  52. Sob, M., Wang, L. G. and Vitek, V., 1997, Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects, Comp. Mat. Sci. 8:100.CrossRefGoogle Scholar
  53. Stoloff, N. S., 1998, Iron aluminides: present status and future prospects, Mat. Sci. Eng. A 258:1.CrossRefGoogle Scholar
  54. Stoloff, N. S. and Liu, C. T., 1996, in Physical Metallurgy and Processing of Intermetallic Compounds, N. S. Stoloff and V. K. Sikka, ed., Chapman & Hall, New York, p. 159.CrossRefGoogle Scholar
  55. Stoloff, N. S. and Sikka, V. K., ed., 1996, Physical Metallurgy and Processing of Intermetallic Compounds, Chapman & Hall, New York.Google Scholar
  56. Tanaka, K., Ichitsubo, T., Inui, H., Yamaguchi, M. and Koiwa, M., 1996, Single-crystal elastic constants of gamma-TiAl, Philos. Mag. Lett. 73:71.ADSCrossRefGoogle Scholar
  57. Tanaka, K., Inui, H., Yamaguch, M. and Koiwa, M., 1999, Directional atomic bonds in MoSi2 and other transition-metal disilicides with the C11(b), C40 and C54 structures, Mat. Sci. Eng. A 261:158.CrossRefGoogle Scholar
  58. Tanaka, K. and Koiwa, M., 1996, Single-crystal elastic constants of intermetallic compounds Intermetallics 4:S29.CrossRefGoogle Scholar
  59. Tanaka, K., Onome, H., Inui, H., Yamaguchi, M. and Koiwa, M., 1997, Mat. Sci. Eng. 240: 188.CrossRefGoogle Scholar
  60. Vasudevan, A. K., Petrovic, J. J., Fishman, S. G., Sorrell, C. A. and Nathal, M. V., ed., 1999, Proceedings of the Engineering Foundation High Temperature Structural Silicides Conference, Mat. Sci. Eng. A 261.Google Scholar
  61. Vitek, V., 1992, Structure of Dislocation Cores in Metallic Materials and Its Impact On Their Plastic Behavior, Prog. Mater. Sci. 36:1.CrossRefGoogle Scholar
  62. Vitek, V., Girshick, A., Siegl, R., Inui, H. and Yamaguchi, M., 1997a, in Properties of Complex Inorganic Solids, A. Gonis, A. Meike and P. E. A. Turchi, ed., Plenum Press, New York, p. 355.CrossRefGoogle Scholar
  63. Vitek, V., Ito, K., Siegl, R. and Znam, S., 1997b, Structure of interfaces in the lamellar TiAl: effects of directional bonding and segregation, Mat. Sci. Eng. A 240:752.CrossRefGoogle Scholar
  64. Westbrook, J.H. and Fleischer, R.L., ed., 1995, Intermetallic Compounds-Principles and Practice, John Wiley & Sons, New York.Google Scholar
  65. Yamaguchi, M., Inui, H., Yokoshima, S., Kishida, K. and Johnson, D. R., 1996, Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys, Mat. Sci. Eng. A 213:25.CrossRefGoogle Scholar
  66. Znam, S., Nguyen-Mann, D., Pettifor, D. G. and Vitek, V., 2000, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • S. Znam
    • 1
  • D. Nguyen-Manh
    • 2
  • D. G. Pettifor
    • 2
  • V. Vitek
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations