Advertisement

Ab Initio Study of Structure and Compressibility of Garnets

  • V. Milman
  • R. H. Nobes
  • E. V. Akhmatskaya
  • B. Winkler
  • C. J. Pickard
  • J. A. White

Abstract

The structure and properties of anhydrous end-members of the garnet family (ugrandite and pyralspite garnets) have been investigated as a function of applied pressure. We also calculated properties of hydrogrossular and hydropyrope at ambient and high pressure and explained the experimentally observed difference in the stability of the hydrogarnet substitution in grossular and pyrope. The study has been performed with the density-functional theory code CASTEP that uses pseudopotentials and plane-wave basis set.

The geometrical parameters of the unit cells containing in excess of 80 atoms have been fully optimised. The calculated static geometry, bulk modulus and its pressure derivative are in good agreement with the available experimental data. It is shown that the framework distortion achieved through the bending of the angle between the octahedra and tetrahedra is the main compression mechanism for all garnets studied.

Keywords

Bulk Modulus Pressure Derivative Garnet Structure Si04 Tetrahedron Neutron Powder Diffraction Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aines, R.D., and Rossman, G.R. (1984). Water in Minerals - a Peak in the Infrared, J. Geophys. Res. 89 4059–4071.ADSCrossRefGoogle Scholar
  2. Akhmatskaya, E.V., Nobes, R.H., Milman, V., and Winkler, B. (1999) Z. Kristallogr. (in press).Google Scholar
  3. Armbruster, T., and Geiger, C.A. (1993) Eur. J. Mineral. 5 59–71.Google Scholar
  4. Babuska, V., Fiala, J., Kumazawa, M., Ohno, I., and Sumino, Y. (1978) Elastic Properties of Garnet Solid-Solution Series, Phys. Earth Planet. Inter. 16 157–176.ADSCrossRefGoogle Scholar
  5. Bass, J.D. (1986) Elasticity of Uvarovite and Andradite Garnets, J. Geophys. Res. 91 7505–7516.ADSCrossRefGoogle Scholar
  6. Baur, W.H. (1974) Geometry of Polyhedral Distortions - Predictive Relationships For Phosphate Group, Acta Crystallogr. B 30 1195–1215.Google Scholar
  7. Carda, J., Tena, M.A., Monros, G., Esteve, V., Reventos, M.M., and Amigo, J.M. (1994) A Rietveld Study of the Cation Substitution Between Uvarovite and Yttrium-Aluminum Synthetic Garnets, Obtained By Sol-Gel Method, Cryst. Res. Technol. 29 387–391.CrossRefGoogle Scholar
  8. Conrad, P.G., Zha, C.-S., Mao, H.-K., and Hemley, R.J. (1999) The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite, Amer. Mineralogist 84 374–383.Google Scholar
  9. Geiger, C. A. (1996) An investigation of the microscopic structural and the macroscopic physicochemical properties of aluminosilicate garnets and their relationships. Habilitationschrift, Kiel University.Google Scholar
  10. Geiger, C.A., and Armbruster, T. (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: Structural dynamic and thermodynamic properties, Amer. Mineralogist 82 740–747.Google Scholar
  11. Geller, S. (1967) Z. Kristallogr. 125 (1967) 1–47.CrossRefGoogle Scholar
  12. Hazen, R.M., and Finger, L.W. (1989) High-Pressure Crystal-Chemistry of Andradite and Pyrope - Revised Procedures For High-Pressure Diffraction Experiments, Amer. Mineralogist 74 352–359.Google Scholar
  13. Hohenberg, P., and Kohn, W. (1964) Phys. Rev. 136 864–871.MathSciNetADSCrossRefGoogle Scholar
  14. Kohn, W. and Sham, L.J. (1965) Phys. Rev. A140 1133–1138.MathSciNetADSCrossRefGoogle Scholar
  15. Kresse, G., and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B54 11169–11186.ADSGoogle Scholar
  16. Lager, G.A., and Von Dreele, R.B. (1996) Neutron powder diffraction study of hydrogarnet to 9.0 Gpa, Amer. Mineralogist 81 1097–1104.Google Scholar
  17. Leger, J. M., Redon, A.M., and Chateau, C. (1990) Compressions of Synthetic Pyrope, Spessartine and Uvarovite Garnets Up to 25-Gpa, Phys. Chem. Minerals 17 161–167.ADSCrossRefGoogle Scholar
  18. Lin, J.S., Qteish, A., Payne, M.C., and Heine, V. (1993) Optimized and Transferable Nonlocal Separable Abinitio Pseudopotentials, Phys. Rev. B47 4174–4180.ADSGoogle Scholar
  19. Meagher, E. P. (1982) Silicate garnets. In: Orthosilicates, ed. by Ribbe, P.H., 25–66.Google Scholar
  20. MSI (1998) CASTEP User Guide. Molecular Simulations Inc., San Diego, CA.Google Scholar
  21. Murad, E. (1984) Magnetic-Ordering in Andradite, Amer. Mineralogist 69 722–724.Google Scholar
  22. Olijnyk, H., Paris, E., Geiger, C.A., and Lager, G.A. (1991) Compressional Study of Katoite [Ca 3 Al 2 (O 4 H 4)3] and Grossular Garnet, J. Geophys. Res. 96 14313–14318.ADSCrossRefGoogle Scholar
  23. Oliveira, J. C. P. de, Costa, M. I. da, Schreiner, W. H., and Vasquez, A. (1989) Magnetic- Properties of the Natural Pyrope Almandine Garnets, J. Magnet. Magnet. Mater. 79 1–7.ADSCrossRefGoogle Scholar
  24. O’Neill, B., Bass, J.D., and Rossman, G.R. (1993). Elastic Properties of Hydrogrossular Garnet and Implications for Water in the Upper-Mantle, J. Geophys. Res. 98 20031–20037.CrossRefGoogle Scholar
  25. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992) Iterative Minimization Techniques For Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients, Rev. Mod. Phys. 64 1045–1097.ADSCrossRefGoogle Scholar
  26. Perdew, J.P., and Wang, Y. (1992) Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy, Phys. Rev. B45 13244–13249.ADSGoogle Scholar
  27. Prandl, W. (1971) Z. Kristallogr. 134 333–343.CrossRefGoogle Scholar
  28. Renner, B., and Lehmann, G. (1986) Correlation of Angular and Bond Length Distortions in To4 Units in Crystals, Z. Kristallogr. 175 43–59.CrossRefGoogle Scholar
  29. Sato, Y., Akaogi, M., and Akimoto, S. I. (1978) Hydrostatic Compression of Synthetic Garnets Pyrope and Almandine, J. Geophys. Res. 83 335–338.ADSCrossRefGoogle Scholar
  30. Sinogeikin, S.V., and Bass, J.D. (1999) Single-crystal elasticity of MgO at high pressure, Phys. Rev. B59 14141–14144.ADSGoogle Scholar
  31. Takahashi, T., and Liu, L. (1970). J. Geophys. Res. 75 5757–5766.ADSCrossRefGoogle Scholar
  32. Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B41 7892–7895.ADSGoogle Scholar
  33. Weaver, J. S., Takahashi, T. and Bass, J. (1976) Isothermal Compression of Grossular Garnets to 250 Kbar and Effect of Calcium On Bulk Modulus, J. Geophys. Res. 81 2475–2482.ADSCrossRefGoogle Scholar
  34. White, J.A., and Bird, D.M. (1994) Implementation of Gradient-Corrected Exchange-Correlation Potentials in Car-Parrinello Total-Energy Calculations, Phys. Rev. B50 4954–4957.ADSGoogle Scholar
  35. Wilkins, R.W.T., and Sabine, W. (1973) Amer. Mineralogist 58 508–516.Google Scholar
  36. Zhang, L., Ahsbahs, H., and Kutoglu, A. (1998) Hydrostatic compression and crystal structure of pyrope to 33 Gpa, Phys. Chem. Miner. 25 301–307.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • V. Milman
    • 1
  • R. H. Nobes
    • 2
  • E. V. Akhmatskaya
    • 2
  • B. Winkler
    • 3
  • C. J. Pickard
    • 3
  • J. A. White
    • 1
  1. 1.MSI,The QuorumCambridgeUK
  2. 2.FECITUxbridgeUK
  3. 3.Institut für GeowissenschaftenMineralogie/KristallographieKielGermany

Personalised recommendations