Skip to main content

Grain Boundary Engineering for the Control of Oxidation Embrittlement

  • Chapter
Properties of Complex Inorganic Solids 2

Abstract

The effect of grain boundary type on intergranular oxidation was studied in a nickel-40at%iron alloy. It has been found that intergranular oxidation takes place preferentially at random boundaries while low-Σ coincidence boundaries, particularly Σ3, Σ11, Σ19 and Σ27 coincidence boundaries have excellent oxidation resistance. The grain boundary engineering for the control of oxidation-assisted intergranular brittleness has been attempted by taking account important roles of the grain size, the grain boundary character distribution (GBCD) and the grain boundary connectivity. The presence of an optimal grain boundary microstructure for this purpose has been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birks, N. and Meier, G. H., Introduction of High Temperature Oxidation of Metals, Edward Arnold, (1983).

    Google Scholar 

  2. Rapp, R. A., The high temperature oxidation of metals forming cation-diffusing scales, Met Trans., 15(b): 195, (1984).

    Google Scholar 

  3. Matsuno, F., Nishikida, S. and Harada, T., Oxidation of Fe-Ni alloys at high temperatures, Tetsu to Hagane, 67: 2029, (1981).

    Google Scholar 

  4. Bricknell, R. H. and Woodford, D. A, Grain boundary embrittlement of the iron-based superalloy IN903A, Met. Trans., 12A: 1673, (1981).

    Google Scholar 

  5. Katsman, A., Grabke, H. J. and Levin, L., Penetration of oxygen along grain boundaries during oxidation of alloys and intermetallics, Oxidation of Metals, 46: 313, (1996).

    Article  Google Scholar 

  6. Czerwinski, F. and Szpunar, J. A., The effect of reactive element on texture and grain boundary character distribution in nickel oxide, Corrosion Science, 39: 1459, (1997).

    Article  Google Scholar 

  7. Kusabiraki, K., Ikegami, J., Nishimoto, T. and Ooka, T., High-temperature oxidation of Fe-38Ni-13Co-4.7Nb-l.5Ti-0.4Si superalloy in Ar-H2O atmosphere, Tetsu to Hagane, 80:574,(1994).

    Google Scholar 

  8. Kusabiraki, K., Sakuradani, K., and Saji, S., Effect of tensile stress on grain boundary selective oxidation in an Fe-36%Ni alloy, Tetsu to Hagane, 84: 291, (1998).

    Google Scholar 

  9. Watanabe, T., An approach to grain boundary design for strong and ductile polycrystals, Res Mechanica, 11: 47, (1984).

    Google Scholar 

  10. Watanabe, T., Grain boundary design and control for high temperature materials, Mater. Sci.Eng., A166: 11,(1993).

    Google Scholar 

  11. Palumbo, G., Lehockey, E. M.and Lin, P., Applications for grain boundary engineered materials, J. Metals, 50,40, (1998).

    Google Scholar 

  12. Watanabe, T., Observation of plane-matching grain boundaries by electron channelling patterns, Phil. Mag., A47: 141, (1983).

    ADS  Google Scholar 

  13. Kaur, I. and Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart, (1988).

    Google Scholar 

  14. Smith, D. A., On the density of coincidence sites in grain boundaries, Scripta Met., 8: 1197, (1974).

    Article  Google Scholar 

  15. Yamaura, S., Igarashi, Y., Tsurekawa, S. and Watanabe, T., Structure-dependent intergranular oxidation in Ni-Fe polycrystalline alloy, Acta Mater., 47: 1163, (1999).

    Article  Google Scholar 

  16. Was, G. S., Thaveeprungsriporn, V. and Crawford, D. C., Grain boundary misorientation effect on creep and cracking in Ni-Based Alloys, J. Metals, 50: 44, (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamaura, S., Igarashi, Y., Tsurekawa, S., Watanabe, T. (2000). Grain Boundary Engineering for the Control of Oxidation Embrittlement. In: Meike, A., Gonis, A., Turchi, P.E.A., Rajan, K. (eds) Properties of Complex Inorganic Solids 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1205-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1205-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5440-6

  • Online ISBN: 978-1-4615-1205-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics