Advertisement

On Element-Specific Magnetometry with Linear Dichroism in Photoemission

  • F. O Schumann
  • R. F. Willis
  • K. W. Goodman
  • J. G. Tobin

Abstract

In this paper, we investigate the magnetic linear dichroism in the core-level photoemission spectra of the binary alloys CoxNi1−x and FexNi1-x /Cu(100).These epitaxial films have fcc structures, but very different magnetic behaviors. We show that the x-ray magnetic linear dichroism in photoemission (XMLD) signal tracks the magnetization in these alloys. Comparison with recent SQUID data provides a quantitative check and endorses the view that XMLD monitors the element-specific magnetometry.

Keywords

Atomic Volume Epitaxial Film Alloy Film Ultrathin Film Linear Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Schmitz, O. Rader, C. Carbone and W. Eberhardt, Temperature dependence of the magnetic circular dichroism of the c(2x2) Mn/Ni(100) surface alloy, Phys. Rev. B 54:15352 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    F. Sirotti, G. Panaccione and G. Rossi, Atom-specific surface magnetometry, Phys. Rev. B 52: R17063 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S.Z. Wu, F.O. Schumann, R.F. Willis, K.W. Goodman, J.G. Tobin and R. Carr, Magnetic dichroism effect of binary alloys using a circularly polarized x ray, J. Vac. Sci. Technol. A15:2287 (1997).ADSGoogle Scholar
  4. 4.
    M.F. Collins and D.A. Wheeler, Magnetic Moments and the Degree of Order in Cobalt-Nickel AlloysProc. Phys. Soc. Lond. 82:633 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    E.F. Wassermann, The Invar problem, J. Mag. Magn. Mat. 100:346 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    J. Dresselhaus M. Moller, T. Kleemann and E. Kisker, Spin-resolved temperature- dependent photoemission from ultrathin FENI alloy-films, J. Mag. Magn. Mat. 148:172 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    F.O. Schumann, S.Z. Wu, G.J. Mankey and R.F. Willis, Growth and magnetic properties of CoxNil-x and FexNil-x ultrathin films on Cu(100), Phys. Rev. B 56:2668 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    F.O. Schumann, R.F. Willis, K. G. Goodman and J. G. Tobin, Magnetic instability of ultrathin fcc FexNil-x films, Phys. Rev. Lett. 79: 5166 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Tobin, K.W. Goodman, G.J. Mankey, R.F. Willis, J.D. Denlinger, E. Rotenberg and A. Warwick, Magnetic x-ray linear dichroism in the photoelectron spectroscopy of ultrathin magnetic alloy films J. Appl. Phys. 79:5626 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    The element-specific asymmetry is calculated as the ratio of the difference spectrum over twice the mean peak height. We cannot use the expression I(up)- I(down)/I(up)+I(down) due to the concentration dependence of the 3p peak heights.Google Scholar
  11. 11.
    W. Kuch, M.T. Lin, K. Meinel, C.M. Schneider, J. Noffke and J. Kirschner, Spin-resolved substrate band mapping in Fe/Cu(100) - application of the spin-filter effect, Phys. Rev. B.51:609 (1995).ADSGoogle Scholar
  12. 12.
    H.C. Siegmann, Surface and 2d-magnetism, J. Phys.: Condens. Matter . 4:8395 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    C. Kittel, Introduction to Solid State Physics. (John Wiley & Sons, Inc., New York, 1991).Google Scholar
  14. 14.
    I.A. Abrikosov, O. Eriksson, P. Soderlind, H.L. Skriver and B. Johansson, Theoretical aspects of the FECNI1-C Invar alloy, Phys. Rev. B. 51:1058 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Freeland, I.L. Grigorov and J.C. Walker, Magnetic phase transition in epitaxial Nil-xFex alloy thin films, Phys. Rev. B . 57:80 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Keavney, D.F. Storm, J.W. Freeland, I.L. Grigorov and J.C. Walker, Site-specific Mossbauer evidence of structure-induced magnetic phase-transition in FCC Fe(100) thin-films, Phys. Rev. Lett. 74:4531 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    R.D. Ellerbrock, A. Fuest, A. Schatz, W. Keune and R.A. Brand, Mossbauer-effect study of magnetism and structure of FCC-like Fe(001) films on Cu(001), Phys. Rev. Lett. 74:3053 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. Thomassen, F. May, B. Feldmann, M. Wuttig and H. Ibach, Phys. Rev. Lett. 69:3831 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    M. Zharnikov, A. Dittschar, W. Kuch, C.M. Schneider and J. Kirschner Magnetic order-disorder transition mediated by a temperature-driven structural transformation, Phys. Rev. Lett. 76:4620 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    S. Müller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H. Zillgen and M. Wuttig, Structural instability of ferromagnetic FCC Fe films on Cu(100), Phys. Rev. Lett. 74:765 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    D. Tian, F. Jona and P.M. Marcus, Structure of ultrathin films of Fe on Cu (111) and Cu (110), Phys. Rev. B . 45:11216 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    W. Kümmerle and U. Gradmann, Ferromagnetism in gamma-iron, Solid State Comms. 24:33 (1977).CrossRefGoogle Scholar
  23. 23.
    J. Thomassen, B. Feldmann and M. Wuttig, Growth, structure and morphology of ultrathin iron films on Cu(100)Surf.Sci. 264:406 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    F. Huang, M.T. Kief, G.J. Mankey, R.F. Willis, Magnetism in the few-monolayers limit -A surface magnetooptic Kerr-effect study of the magnetic-behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111), Phys. Rev. B 49:3962 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • F. O Schumann
    • 1
  • R. F. Willis
    • 1
  • K. W. Goodman
    • 2
  • J. G. Tobin
    • 2
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Chemistry and Material ScienceLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations