The Fermi Surfaces of Metallic Alloys and the Oscillatory Magnetic Coupling Between Magnetic Layers Separated by Such Alloy Spacers

  • B. L. Györffy
  • N. N. Lathiotakis


We review the theory of oscillatory magnetic coupling in metallic multilayers across alloy spacers. We illustrate the relationship between the frequencies of the oscillations and the extremal caliper vectors of the Fermi surface of the spacer by explicit calculations for Cu(1−x)Ni x , Cr(1−x)V x and Cr(1−x)Mo x alloys. We argue the measurement of the frequencies of such oscillations can be an extremely useful and cheap probe of the Fermi surface of random alloys.


Fermi Surface Oscillation Period Magnetic Layer Versus Concentration Total Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. L. Györffy, B. Ginatempo, D. D. Johnson, D. M. Nicholson, F. J. Pinski, J. B. Staunton and H. Winter, Phil. Trans. R. Soc. London A 334 515–526 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    M. Springford (Ed) ”Electrons at the Fermi Surface”, Cambridge University Press, (1980).Google Scholar
  3. [3]
    P. T. Coleridge in ”Electrons at the Fermi Surface”, Ed. M. Springford, Cambridge University Press, (1980).Google Scholar
  4. [4]
    S. Berko, Proc. NATO ASI on the Electorns in Disordered Metals and at Metallic Surfaces, ed. P. Phariseau, B. L. Gyorffy and L. Scheire (New York:Plenum), p 239–91 (1979)CrossRefGoogle Scholar
  5. S. Berko, it proc. “Enrico Fermi,, Course LXXXIII, Varena, Positron Solid State Physics, ed. W. Brandt, North Holland Pub. Co. (1983).Google Scholar
  6. [5]
    S. S. P. Parkin, N. More, K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).ADSCrossRefGoogle Scholar
  7. [6]
    B. Heinrich, J. A. C. Bland (Eds.), Ultrathin Magnetic Structures II, Springer-Verlag (1994).Google Scholar
  8. [7]
    P. Bruno, C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).ADSCrossRefGoogle Scholar
  9. [8]
    D. M. Edwards, J. Mathon, R. B. Muniz and M. S. Phan, Phys. Rev. Lett. 67, 493 (1991)ADSCrossRefGoogle Scholar
  10. D. M. Edwards, J. Mathon, R. B. Muniz and M. S. Phan,J. Phys.: Cond. Matt., 3, 4941 (1991).Google Scholar
  11. [9]
    M.D. Stiles., Phys. Rev. B, 48, 7238 (1993).ADSCrossRefGoogle Scholar
  12. [10]
    N. N. Lathiotakis, B. L. Györffy, Ûjfalussy B and J. Staunton (1998) J. Mag. Mag. Matt., 185 293 (1998).ADSCrossRefGoogle Scholar
  13. [11]
    B. L. Györffy, and G. M. Stocks, ’Electrons in Disordered Metals and at Metallic Surfaces’, Ed. P. Phariseau, B. Györffy and L. Scheire, NATO ASI Series, Plenum Press, New York (1979).Google Scholar
  14. [12]
    J. S. Faulkner, Progress in Matt. Sc., 27, 1–87 (1982).CrossRefGoogle Scholar
  15. [13]
    S.S.P Parkin, C. Chappert, F. Herman, Europhys. Lett. 24, p 71 (1993).ADSCrossRefGoogle Scholar
  16. [14]
    Bobo F-J., Hennet L., Piecuch M. and Hubsch J., Europhys. Lett. 24, pp. 139–144 (1993)ADSCrossRefGoogle Scholar
  17. Bobo F-J., Hennet L., Piecuch M. and Hubsch J.,ibid. J.Phys.: Condens. Matter 6 2689 (1994).ADSCrossRefGoogle Scholar
  18. [15]
    S.N. Okuno, K. Inomata, Phys. Rev. Lett. 70, 1711 (1993)ADSCrossRefGoogle Scholar
  19. S.N. Okuno, K. Inomata, ibid. J. Mag. Mag. Matt. 126, 403 (1993).ADSCrossRefGoogle Scholar
  20. [16]
    N. N. Lathiotakis, B. L. Györffy, J. B. Staunton, J. Phys.: Condens. Matter 10, 10357 (1998).ADSCrossRefGoogle Scholar
  21. [17]
    E. Bruno, B. Ginatempo, Phys. Rev. B 55,12946 (1997)ADSCrossRefGoogle Scholar
  22. E. Bruno, G. M. Florio, B. Ginatempo, E. S. Giuliano, J. Comp. Phys. 111, 248 (1994).ADSzbMATHCrossRefGoogle Scholar
  23. [18]
    M. van Schilfgaarde, W. A. Harrison, Phys. Rev. Lett. 71, 3870 (1993).ADSCrossRefGoogle Scholar
  24. [19]
    D. D. Koelling., Phys. Rev. B 50, 273 (1994).ADSCrossRefGoogle Scholar
  25. [20]
    D. Li, J. Pearson, S. D. Bader, E. Vescovo, D.-J. Huang, P. D. Johnson, B. Heinrich, Phys. Rev. Lett. 78, 1154 (1997).ADSCrossRefGoogle Scholar
  26. [21 ]
    S. Mirbt, A. M. N. Niklasson, B. Johansson, H.L. Scriver, Phys. Rev. B54, 6382 (1996)ADSCrossRefGoogle Scholar
  27. S. Mirbt, B. Johansson Phys. Rev. B 56, 287 (1997).ADSCrossRefGoogle Scholar
  28. [22]
    M. D. Stiles, Phys. Rev. 54, 14679 (1996).Google Scholar
  29. [23]
    L. Tsetseris, B. Lee, Y-C. Chang, Phys Rev. B 55, 11586 (1997).ADSCrossRefGoogle Scholar
  30. [24]
    E. E. Fullerton, M. J. Conover, J. E. Mattson, C. H. Sowers, S. D. Bader, Oscillatory Interlayer Coupling and Giant Magnetoresis- tance in epitaxial Fe/Cr(211) and (100) superlattices, Phys. Rev. B, 48,15755 (1993)ADSCrossRefGoogle Scholar
  31. E. E. Fullerton, M. J. Conover, J. E. Mattson, C. H. Sowers, S. D. Bader,ibid Orientationally independent Antiferromagnetic Coupling in epitaxial Fe/Cr (211) and (100) superlattices, J. App. Phys., 75, 6461 (1994).ADSCrossRefGoogle Scholar
  32. [25]
    N. N. Lathiotakis, B. L. Györffy, E. Bruno, B. Ginatempo and S.S. P. Parkin, Oscillatory Exchange Coupling across Cr(1-x) Vx alloy spacers, Phys. Rev. Lett. 83, 215 (1999).ADSCrossRefGoogle Scholar
  33. [26]
    M. van Schilfgaarde, F. Herman, S. S. P. Parkin, and J. Ku- drnovský. Theory of Oscillatory Exchange Coupling in Fe/(V,Cr) and Fe/(Cr,Mn), Phys. Rev. Lett., 74, 4063 (1995).ADSCrossRefGoogle Scholar
  34. [27]
    D. D. Koelling, Long-period oscillation in the magnetic coupling through chromium in a magnetic multilayer: Bulk issuesPhys. Rev. B 59, 6351 (1999).ADSCrossRefGoogle Scholar
  35. [28]
    N. N. Lathiotakis, B. L. Györffy, B. Ginatempo, E. Bruno, The dilemma of the rigid band model arising from measurements of the Oscillatory Excha ge Coupling across Cr(l-x)Mox alloy spacers, J. Mag. Mag. Matt., 198, 447 (1999).ADSCrossRefGoogle Scholar
  36. [29]
    A. Alam, private communication.Google Scholar
  37. [30]
    S. S. P. Parkin, Systematic variation of the strength and oscillation period of indirect Magnetic Exchange Coupling through the 3d, 4d, and 5d transition-metals, Phys. Rev. Lett. 67, 3598 (1991).ADSCrossRefGoogle Scholar
  38. [31]
    E. Bruno, B. Ginatempo, E.S. Giuliano, A.V. Ruban, Y. Vekilov, Fermi Surfaces and Electronic Topological Transitions in metallic solid-solutions, Phys. Rep., 249, 353 (1994).ADSCrossRefGoogle Scholar
  39. [32]
    B. Ûjfalussy, N. N. Lathiotakis, B. L. Györffy, J. B. Staunton, Asymptotic behaviour of the Oscillatory Exchange Coupling across alloy spacers: a first-principles approach, Phil. Mag. B 78, 577 (1998)CrossRefGoogle Scholar
  40. N.N. Lathiotakis, B. L. Györffy and B. Ûjfalussy, First-principles asymptotics for the Oscillatory Exchange Coupling in Co/Cu/Co of (100), (110), and (111) orientations, Phys. Rev. B, 61, 6854 (2000).ADSCrossRefGoogle Scholar
  41. [33]
    L. Szunyogh, B. Ûjfalussy, P. Weinberger, J. Kollár, Self-consistent localized KKR scheme for surfaces and interfaces, Phys. Rev. B, 49, 2721 (1994).ADSCrossRefGoogle Scholar
  42. [34]
    L. Nordström, P. Lang, R. Zeller and P. H. Dederichs, Influence of the magnetic-layer thickness on the Interlayer Exchange Coupling - Competition between oscillation periods, Phys. Rev. B50, 13058 (1994).ADSCrossRefGoogle Scholar
  43. [35]
    M. T. Johnson, R. Coehoorn, J. J. de Vries, N. W. E. McGee, J. aan de Stegge, P. J. H. Bloemen, Orientational dependence of the Oscillatory Exchange Interaction in Co/Cu/Co, Phys. Rev. Lett. 69, 969 (1992).ADSCrossRefGoogle Scholar
  44. [36]
    S. S. P. Parkin, R. F. Marks, R. F. C. Farrow, G. R. Harp, Q. H. Lam, and R. J. Savoy, Giant Magnetoresistance and enhanced Antiferromagnetic Coupling in highly oriented Co/Cu (111) super- lattices , Phys. Rev. B46, 9262 (1992).ADSCrossRefGoogle Scholar
  45. [37]
    E. M. Lifshitz, L. P. Pitaevskii, Statistical Physics, Part 2, Landau and Lifshitz Course of Theoretical Physics, Vol. 9, Pergamon Press (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • B. L. Györffy
    • 1
  • N. N. Lathiotakis
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations