Skip to main content

Ab Initio Theory of Perpendicular Transport in Metallic Magnetic Multilayers

  • Chapter
Properties of Complex Inorganic Solids 2

Abstract

The current-perpendicular-to-plane (CPP) magnetoconductance of a sample sandwiched by two ideal non-magnetic leads is described at an ab initio level. The socalled ‘active’ part of the system is a trilayer consisting of two magnetic slabs of finite thickness separated by a non-magnetic spacer. We use a transmission matrix formulation of the conductance based on surface Green functions as formulated by means of the tight-binding linear muffin-tin orbital method. An equivalent and computationally more efficient formulation of the problem based on reflection matrices is also presented. The formalism is extended to the case of lateral supercells with random arrangements of atoms which in turn allows to deal with ballistic and diffusive transport on equal footing. Applications refer to fcc-based Co/Cu/Co(001) trilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friedrich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001) Cr Magnetic Superlattices Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced Magnetoresistance in Layered Magnetic-Structures With Antiferromagnetic Interlayer Exchange Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  3. W.P. Pratt Jr., S.-F. Lee, J.M. Slaughter, R. Loloee, P.A. Schroeder, and J. Bass, Perpendicular Giant Magnetoresistances of Ag/Co Multilayers Phys. Rev. Lett. 66, 3060 (1991).

    Article  ADS  Google Scholar 

  4. P.M. Levy, Solid State Phys. 47, 367 (1994).

    Article  Google Scholar 

  5. K.M. Schep, P.J. Kelly, and G.E.W. Bauer, Ballistic transport and electronic structure Phys. Rev. B 57, 8907 (1998).

    ADS  Google Scholar 

  6. M.A.M. Gijs and G.E.W. Bauer, Perpendicular giant magnetoresistance of magnetic multilayers Adv. Phys. 46, 285 (1997).

    Article  ADS  Google Scholar 

  7. P. Zahn, I. Mertig, M. Richter, and H. Eschrig, Ab-Initio Calculations of the Giant Magnetoresistance Phys. Rev. Lett. 75, 3216 (1995).

    Article  Google Scholar 

  8. D.R. Penn and M.D. Stiles, Solution of the Boltzmann equation without the relaxation-time approximation Phys. Rev. B 59, 13338 (1999).

    Article  ADS  Google Scholar 

  9. W.H. Butler, X.-G. Zhang, D.M.C. Nicholson, and J.M. Mac Laren, First-Principles Calculations of Electrical-Conductivity and Giant Magnetoresistance of Co-Vertical-Bar-Cu-Vertical-Bar-Co Spin Valves Phys. Rev. B 52, 13399 (1995).

    Google Scholar 

  10. P. Weinberger, P.M. Levy, J. Banhart, L. Szunyogh, and B. Ûjfalussy, ’Band structure’ and electrical conductivity of disordered layered systems J. Phys.: Condens. Matter 8, 7677 (1996)

    Article  ADS  Google Scholar 

  11. C. Blaas, P. Weinberger, L. Szunyogh, P.M. Levy, and C.B. Sommers, Ab initio calculations of magnetotransport for magnetic multilayers Phys. Rev. B 60, 492 (1999).

    ADS  Google Scholar 

  12. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  13. I. Turek, V. Drchal, J. Kudrnovský, M. Sob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, Boston-London-Dordrecht, 1997).

    Book  Google Scholar 

  14. V. Drchal, J. Kudrnovský, and I. Turek, Ab-initio calculations of the electronic and atomic structure of solids and their surfaces Comput. Phys. Commun. 97, 111 (1996).

    Article  ADS  Google Scholar 

  15. J.A. Stovneng and P. Lipavský, Multiband Tight-Binding Approach to Tunneling in Semiconductor Heterostructures - Application to Gamma-X Transfer in GaAs Phys. Rev. B 49, 16494 (1994).

    Article  ADS  Google Scholar 

  16. J. Mathon, A. Umerski, and M. Villeret, Oscillations with Co and Cu thickness of the current- perpendicular-to-plane giant magnetoresistance of a Co/Cu/Co(001) trilayer Phys. Rev. B 55, 14378 (1997).

    Article  ADS  Google Scholar 

  17. J. Cerdá, M.A. Van Hove, P. Sautet, and M. Salmeron, Efficient method for the simulation of STM images. I. Generalized Green-function formalism Phys. Rev. B 56, 15885 (1997).

    Google Scholar 

  18. S. Sanvito, C.J. Lambert, J.H. Jefferson, and A.M. Bratkovsky, General Green’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers Phys. Rev. B 59, 11936 (1999).

    Google Scholar 

  19. P. Bruno, H. Itoh, J. Inoue, and S. Nonoyama, Influence of disorder on the perpendicular magnetoresistance of magnetic multilayers J. Mag. Mag. Mat. 198–199, 46 (1999).

    Article  Google Scholar 

  20. E.Yu. Tsymbal and D.G. Pettifor, Spin-polarized electron tunneling across a disordered insulator Phys. Rev. B 58, 432 (1998).

    ADS  Google Scholar 

  21. F. James, A Review of Pseudorandom Number Generators Comput. Phys. Commun. 60, 329 (1990).

    Article  ADS  MATH  Google Scholar 

  22. S. Zhang and P. Levy, Interplay of the specular and diffuse scattering at interfaces of magnetic multilayers Phys. Rev. B 57, 5336 (1998).

    ADS  Google Scholar 

  23. V. Drchal, J. Kudrnovský, I. Turek, and P. Weinberger, Interlayer magnetic coupling: The torque method Phys. Rev. B 53, 15036 (1996).

    Article  ADS  Google Scholar 

  24. B.L. Gyorffy and G.M. Stocks, in Electrons in Disordered Metals and at Metallic Surfaces, eds. P. Phariseau, B.L. Gyorffy, and L. Scheire (NATO ASI Series, Plenum Press, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kudrnovský, J., Drchal, V., Blaas, C., Weinberger, P., Turek, I., Bruno, P. (2000). Ab Initio Theory of Perpendicular Transport in Metallic Magnetic Multilayers. In: Meike, A., Gonis, A., Turchi, P.E.A., Rajan, K. (eds) Properties of Complex Inorganic Solids 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1205-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1205-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5440-6

  • Online ISBN: 978-1-4615-1205-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics