Skip to main content

Development and Properties of ε-Martensite in Co-Cr-Mo Alloys for Biomaterials Applications

  • Chapter
Properties of Complex Inorganic Solids 2

Abstract

This work is related to the FCC → HCP transformation exhibited by Co-base alloys. In particular it is known that the transformation occurs martensitically by either; (a) athermal, (b) isothermal, or (c) a strain induced transformation. The mechanisms involved are not exactly the same in each case, and the formation of ε-martensite can develop various morphologies. Nevertheless, in all of the modes of transformation, the nucleation stage seems to control the FCC → HCP transformation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Smethurst and R.B. Waterhouse, Causes of Failure in Total Hip Prostheses, Journal of Materials Science, Vol. 12, (1977) pp. 1781–1792

    Article  ADS  Google Scholar 

  2. R.M. Rose, Materials for internal prostheses in 1974 Yearbook of Science and Technology, McGraw Hill, New York.

    Google Scholar 

  3. D.C. Mears; Int. Met. Rev., Vol. 22, (1977), pp. 119–155.

    Article  Google Scholar 

  4. H.S. Dobbs and Robertson, Heat treatment of cast Co-Cr-Mofor orthopedic implant use, Journal of Materials Science, 18, (1983), pp. 391–401.

    Article  ADS  Google Scholar 

  5. C. Clarke, P. Campbell and N. Kossovsky; in Particulate Debris from Medical Implants: Mechanisms of Formation and Biological Consequences, K.R. St. John (ed.), ASTM STP 1144, American Society for Testing Materials, Philadelphia, (1992), pp. 7–26.

    Google Scholar 

  6. T.M Devine and J. Wulff, Cast Vs. Wrought Cobalt-chromium surgical implant alloys Journal of Biomedical Materials Research, Vol. 9, (1975), pp 151–167.

    Google Scholar 

  7. R.T Holt and W. Wallace; Mech. Eng. Report, MS-143, National Research Council Canada, Ottawa, 1980.

    Google Scholar 

  8. J.B. Vander Sande, J.R. Coke and J. Wulff, A transmission electron microscopy study of the mechanisms of strengthening in heat-treated Co-Cr-Mo-C alloys, Metallurgical Transactions A, Vol. 7A, (1976), pp. 389–397.

    Article  ADS  Google Scholar 

  9. D. H. Buckley and R.L Johnson; Trans. ASLE, 8, (1965), 123, cited in “Crystal structure”, Ch. 17 in Wear of Metals, A.D. Sarker (ed.), Pergamon Press, New York, (1976), pp. 93–95.

    Google Scholar 

  10. A. Salinas-Rodriguez and J.L. Rodriguez Deformation behavior of low-carbon Co-Cr-Mo alloys Journal of Biomedical Materials Research, Vol. 31, (1996), pp. 409–419.1.

    Article  Google Scholar 

  11. D.H. Buckley; Cobalt, Vol. 38, 20, (1968) cited in “Crystal structure”, Ch. 17 in Wear of Metals, A.D. Sarker (ed.), Pergamon Press, New York, (1976), pp. 93–95.

    Google Scholar 

  12. P. Huang Martensitic transformation and its role on the tribological behavior of a CoCrMo implant alloy Doctoral Thesis; University of Wisconsin-Milwaukee, U.S.A. (1997).

    Google Scholar 

  13. F. Sebilleau and H. Bibring The allotropic transformation of Cobalt, Rev. Met. 1642, (1955), pp. 209–217.

    Google Scholar 

  14. R Adams and C. Altstetter; Transactions of the Metallurgical Society of AIME, Vol. 242, January 1968, pp. 139–143.

    Google Scholar 

  15. A.J. Saldívar Garcia Doctoral Thesis, Estudio por difracción de rayos-X In-situ de la transformación martensítica isotérmica en la aleación Co-27Cr-5Mo-0.05C; CINVESTAV-IPN Unidad Saltillo, Mexico (1998).

    Google Scholar 

  16. A.J. Saldívar Garcia, A, Maní M.and A. Salinas Rodriguez Formation of HCP martensite during the isothermal aging of an FCC Co-27Cr-5Mo-0.05C orthopedic implant alloy Metallurgical and Materials Transactions A; Vol. 30A, (May 1999), pp.1177–1184.

    Article  Google Scholar 

  17. M. Sage and C. Gillaud Méthode d’analyse quantitative des varietés allotropiques du cobalt par les rayons X, Rev. Met. (1950), Vol. 49, pp. 139–145.

    Google Scholar 

  18. D.Z. Yang and C.M. Wayman Slow growth of isothermal lath martensite in an Fe-21Ni-4Mn alloy, Acta Metallurgica, Vol. 32, No. 6, pp. 949–954 (1984).

    Article  Google Scholar 

  19. G.B. Olson and M. Cohen, A general mechanism of martensitic nucleation: Part III Kinetics or martensitic nucleation, Metallurgical Transactions A, 7A, ( Dec. 1976), pp. 1915–1923.

    ADS  Google Scholar 

  20. T. Ericcson; Acta Metallurgiac, Vol. 14, (1966), pp. 853,

    Article  Google Scholar 

  21. L. Remy, A. Pineau, Twinning of strain-induced FCC-HCP transformation on the mechanical properties of Co- Ni-Cr-Mo alloys, Mater. Sci. Eng. 26, (1976), pp 123.

    Article  Google Scholar 

  22. M. Cohen and C.M Wayman, Fundamentals of martensitic reactions, Metallurgical Treatises in J.K Tien, J.F. Elliot (Eds.), Conf. Proceedings Beijing China, (1981), p. 445.

    Google Scholar 

  23. K. Rajan, J.B. Vander Sande, Room temperature strengthening mechanisms in a Co-Cr-Mo-C, Alloy Journal of Materials Science, Vol. 17, (1982), pp. 769–778.

    Article  ADS  Google Scholar 

  24. G.B. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions A, 6A, (April 1975), pp. 791–795.

    Article  ADS  Google Scholar 

  25. J. Cahn and W. Hagel Decomposition of Austenite by Diffusional Processes, V. Zackay and H. Aaronson, eds. Intersciences Publishers, Inc., New York, N.Y., (1962), p. 134.

    Google Scholar 

  26. N. Cong Dahn, D. Morphy and K. Rajan, Kinetics of the martensitic FCC-HCP transformation in Co-Cr-Mo alloy powders, Acta Metallurgies, Vol. 32, No. 9, (1984), pp.1317–1322.

    Article  Google Scholar 

  27. S.R. Pati and M. Cohen, Acta Metallurgica. Vol. 17, (1969), p.189.

    Article  Google Scholar 

  28. C.L. Magee, Metallurgical Transactions, Vol.2, (1971), p. 2409.

    Article  Google Scholar 

  29. R.L. Fullman, Trans. Am. Inst. Min. Engrs., Vol. 197, (1953), p. 447.

    Google Scholar 

  30. P.H Adler and G.B Olson, Thermodynamics and kinetics of δ-a martensitic transformation in Pu-alloys; Metallurgical Transactions A, Vol. 19A, (1988), pp. 2705–2711.

    Article  ADS  Google Scholar 

  31. F. Lecroisey and A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C System, Metallurgical Transactions A, Vol. 3A, (1972), pp. 387–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

López, H.F., Saldívar, A., Huang, P. (2000). Development and Properties of ε-Martensite in Co-Cr-Mo Alloys for Biomaterials Applications. In: Meike, A., Gonis, A., Turchi, P.E.A., Rajan, K. (eds) Properties of Complex Inorganic Solids 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1205-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1205-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5440-6

  • Online ISBN: 978-1-4615-1205-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics