Dependence of Carbide Precipitation on Grain Boundary Structure in Sensitized Austenitic Stainless Steel

  • Hiroyuki Kokawa
  • Takashi Koyanagawa
  • Masayuki Shimada
  • Yutaka S. Sato
  • Takeshi Kuwana


Grain boundary carbide precipitation and intergranular corrosion in sensitized austenite stainless steel were examined by transmission electron microscopy (TEM) to clarify the effect of grain boundary structure on precipitation and corrosion. A type 304 steel, which had been solutionized at 1350 K was heat-treated at temperatures of 800-1300 K. Oxalic acid etch and Strauss tests showed that the frequency of grain boundaries with M23C6 carbide precipitation and corroded boundaries increased with holding time at sensitizing temperatures. The grain boundary carbide precipitation was observed during heat treatment at 1000 K by TEM. Grain boundaries were characterized on the basis of the Coincidence Site Lattice (CSL) theory using electron diffraction Kikuchi patterns. The observations revealed that the propensity to intergranular precipitation depends strongly on the grain boundary structure. Carbide precipitates tend to be detected at grain boundaries with higher Σ -values or larger deviation angles (Δθ) from low- Σ CSL misorientations. The border lines between precipitation and no precipitation can be drawn by a deviation parameter of Δθ/ΔθC, where Δθc is the maximum deviation angle by Brandon’s criterion. The border line of Δθ/Δθc decreased with the increase in the holding time at 1000 K. This means that the more ordered boundary needs the longer time for intergranular carbide precipitation and corrosion than less ordered or random boundaries.


Austenitic Stainless Steel Boundary Structure Carbide Precipitation Intergranular Corrosion Coincidence Site Lattice Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Pumphrey, Special High Angle Boundaries. “Grain Boundary Structure and Properties”, ed. by G. A. Chadwick and D. A. Smith, p. 139, Academic Press, London, (1976).Google Scholar
  2. 2.
    J. Le Coze, M. Biscondi, J.Levy, C.Goux, Precipitation intergranulaire dans des bicristaux orientesd’aluminium-curvre. Mem. Sci. Rev, Met., 70(1973), 397.Google Scholar
  3. 3.
    J. Le Coze, M. Biscondi,lntergranular Precipitation in Aluminum-Copper Bicrystals. Can. Metall. Quart., 13(1974), 59.CrossRefGoogle Scholar
  4. 4.
    M. Froment, Sur le mecanisme de la corrosion intergranulaire des materiaux metalliques. Phys., 36(1975), C4–371.Google Scholar
  5. 5.
    X. R. Qian, Y. T. Chou, Correlation Between Grain-Boundary Corrosion and Grain-Boundary Energy in Niobium Bicrystals. Phil. Mag. A, 45(1982), 1075.ADSCrossRefGoogle Scholar
  6. 6.
    R. Stickler, A. Vinckier, La morphologie des carbures (Cr,Fe)23C6 et son influence sur la corrosion intergranulaire d’un acier inoxydable 18/8. Mem. Sci. Rev. Met., 60(1963), 489.Google Scholar
  7. 7.
    V. Cíhal, I. Kasová, Relation between carbide precipitation and Intercrystalline Corrosion of stainless steels. Corrosion Sci., 10(1970), 875.CrossRefGoogle Scholar
  8. 8.
    E. A. Trillo, L. E. Murr, A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels. J. Mater. Sci., 33(1998), 1263.ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Trillo, L. E. Murr, Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Mater., 47(1999), 235.CrossRefGoogle Scholar
  10. 10.
    T. Kuwana, H. Kokawa, Transmission electron microscope observations of SUS304L austenitic stainless steel welds Trans. JWS, 16(1985), 99.Google Scholar
  11. 11.
    H. Kokawa, T. Kuwana, Relationship between grain boundary structure and intergranular corrosion in heat-affected zone of type 304 stainless steel weldments Trans.JWS, 23(1992), 73.Google Scholar
  12. 12.
    T. Watanabe, Approach to grain boundary design for strong and ductile polycrystals Res. Mechanica.,11(1984), 47.Google Scholar
  13. 13.
    T. Watanabe, The potential for grain boundary design in materials development Mater. Forum, 11(1988), 284.Google Scholar
  14. 14.
    T. Watanabe, The importance of grain boundary character distribution (GBCD) to recrystallization grain growth and texture Scripta. Metall. Mater., 27(1992), 1497.Google Scholar
  15. 15.
    G. Palumbo, E. M. Lehockey, and P. Lin, Applications for grain boundary engineered materials. JOM, 50–2(1998), 40.CrossRefGoogle Scholar
  16. 16.
    P. Lin, G. Palumbo, U. Erb, K. T. Aust, Influence of grain-boundary-character-distribution on sensitization and intergranular corrosion of Alloy-600. Scripta Metall. Mater., 33–9(1995), 1387.CrossRefGoogle Scholar
  17. 17.
    W. Bollmann, Crystal defects and crystalline interfaces, Springer-Verlag, Berlin, (1970).CrossRefGoogle Scholar
  18. 18.
    D. H. Warrington, P. Bufalini, The coincidence site lattice and grain boundaries. Scripta Met., 5(1971), 771.CrossRefGoogle Scholar
  19. 19.
    W. Bollmann, B. Michaut, G.Sainfort, Pseudo-subgrain-boundaries in stainless steel. Phys. Stat. Sol. (a),13(1972), 637.ADSCrossRefGoogle Scholar
  20. 20.
    H. Grimmer, W. Bollmann, D.H.Warrington, coincidence-site lattices and complete pattern-shift lattices in cubic crystals. Acta Cryst. A, 30(1974), 197.CrossRefGoogle Scholar
  21. 21.
    P. H. Pumphrey,The use of transmission electron microscopy in the study of special high-angle grain boundaries in polycrystals. Phys. Stat. Sol. (a), 28(1975), 545.ADSCrossRefGoogle Scholar
  22. 22.
    W. A. Clark, D. A. Smith, the dislocation structure of a E∞=9 related coincidence boundary in stainless steel. Phil. Mag. A, 38(1978), 367.ADSCrossRefGoogle Scholar
  23. 23.
    H. Kokawa, T. Watanabe, S.Karashima, Reexamination of deviation angles from exact csl misorientations in early work on grain boundary characterization. Scripta Metall., 21(1987), 839.CrossRefGoogle Scholar
  24. 24.
    V. Randle, B. Ralph, A practical approach to the determination of the crystallography of grain boundaries. J. Mater. Sci., 21(1986),3823.ADSCrossRefGoogle Scholar
  25. 25.
    D. G. Brandon, The Structure of High-Angle Grain Boundaries. Acta Metall., 14(1966), 1479.CrossRefGoogle Scholar
  26. 26.
    H. Kokawa, T. Watanabe, S.Karashima, Sliding behaviour and dislocation structures in aluminium grain boundaries. Phil. Mag. A, 44(1981), 1239.ADSCrossRefGoogle Scholar
  27. 27.
    H. Kokawa, T. Watanabe, Dissociation of lattice dislocations in coincidence boundaries. J. Mater. Sci., 18(1983), 1183.ADSCrossRefGoogle Scholar
  28. 28.
    H. Kokawa, T. Watanabe, S.Karashima, Structural changes during sliding of aluminium grain boundaries with different initial structures. Scripta Metall., 17(1983), 1155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Hiroyuki Kokawa
    • 1
  • Takashi Koyanagawa
    • 1
  • Masayuki Shimada
    • 1
  • Yutaka S. Sato
    • 1
  • Takeshi Kuwana
    • 1
  1. 1.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations