Tests of the Polymorphous Coherent Potential Approximation

  • J. S. Faulkner
  • B. Ujfalussy
  • Nassrin Moghadam
  • G. M. Stocks
  • Yang Wang


The coherent potential approximation (CPA) is a powerful mathematical technique for approximating the electronic structure of substitutional solid solution alloys. Most applications of the CPA to date have assumed an isomorphous model of the alloy in which all of the A atoms are assumed to be the same, as are all of the B atoms. The derivation of self-consistent potentials for the alloys within the framework of the CPA and the isomorphous model leads inevitably to the conclusion that the Madelung potential at each site must be zero. The approximate theory resulting from this derivation is called the KKR-CPA. The polymorphous CPA (PCPA) makes use of supercells that contain many atoms, and the Madelung potentials at all of the sites are calculated exactly. PCPA calculations produce a polymorphous alloy model in which every atom in the supercell is different. Tests will be shown that demonstrate the advantages of the PCPA over the KKR-CPA in explaining experiments that depend critically on the charge transfer in an alloy.

Key words

alloy theory coherent potential approximation electronic states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Faulkner, in Progress in Materials Science, Vol. 27, edited J. W. Christian, P. Haasen, and T. B. Massalski, (Pergamon Press, Oxford, England, 1982).Google Scholar
  2. 2.
    P. Soven, Phys. Rev. 156, 809 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  4. W. Kohn and L. J. Sham, Phys. Rev. 140, Al 133 (1965).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    H. Winter and G. M. Stocks, Calculation of Self-Consistent Potentials For Substitutionally Disordered-Systems With Application to the Agx-PdI-X Alloy Series. Phys. Rev. B 27, 882 (1983)ADSCrossRefGoogle Scholar
  6. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Density-Functional Theory For Random Alloys - Total Energy Within the Coherent-Potential Approximation. Phys. Rev. Lett. 56, 2088 (1986)ADSCrossRefGoogle Scholar
  7. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Total-Energy and Pressure Calculations For Random Substitutional Alloys. Phys. Rev. B 41,9701 (1990).ADSCrossRefGoogle Scholar
  8. 5.
    G. M. Stocks, D. M. C. Nicholson, Y. Wang, W. A. Shelton, Z. Szotek, and W. M. Temmermann, in High Performance Computing Symposium; Grand Challenges in Computer Simulation, Proceedings of the 1994 Simulation Multiconference, edited by A. M. Tentner, (The Society for Computer Simulation, San Diego, Ca., 1994)Google Scholar
  9. D. M. C. Nicholson, G. M. Stocks, Y. Wang, W. A. Shelton, Z. Szotek, and W. M. Temmermann, Stationary Nature of the Density-Functional Free-Energy - Application to Accelerated Multiple-Scattering Calculations. Phys. Rev. B 50,14686 (1994).Google Scholar
  10. 6.
    Yang Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson, Z. Szotek, and W. M. Temmerman, Order-N Multiple-Scattering Approach to Electronic-Structure Calculations. Phys. Rev. Lett. 75, 2867 (1995).ADSCrossRefGoogle Scholar
  11. 7.
    J. S. Faulkner, Yang Wang, and G. M. Stocks, Coulomb energies in alloys. Phys. Rev. B 55,7 492(1997).Google Scholar
  12. 8.
    L. Reinhard, B. Shönfeld, and G. Kostorz, Short-Range Order in Alpha-Brass, Phys. Rev. B 41, 1727 (1990).ADSCrossRefGoogle Scholar
  13. 9.
    S. G. Louie, K. Ho, and M. L. Cohen, Self-Consistent Mixed-Basis Approach to the Electronic-Structure of Solids, Phys. Rev. B 19, 1774 (1979)ADSCrossRefGoogle Scholar
  14. J. Neve, B. Sundqvist, and O. Rapp, Electron Band-Structure, Resistivity, and the Electron-Phonon Interaction for Niobium Under Pressure, Phys. Rev. B 28, 629 (1983)ADSCrossRefGoogle Scholar
  15. A. R. Jani, N. E. Brenner, and J. Callaway, Band-Structure and Related Properties of BCC Niobium, Phys. Rev. B 38, 9425 (1988)ADSCrossRefGoogle Scholar
  16. D. M. Nicholson and J. S. Faulkner, Applications of the Quadratic Korringa-Kohn-Rostoker Band-Theory Method, Phys. Rev. B 39, 8187 (1989).ADSCrossRefGoogle Scholar
  17. 10.
    P. P. Singh and A. Gonis, Electronic-Structure of Metallic Alloys Using Charge-Neutral Atomic Spheres, Phys. Rev. B 49, 1642 (1994).ADSCrossRefGoogle Scholar
  18. 11.
    I.A. Abrikosov, Yu. H. Vekilov, A. V. Ruban, Fast LMTO-CPA Method for Electronic-Structure Calculations of Disordered Alloys - Application to Cu-Ni and Cu-Au Systems, Phys. Letters A154, 407 (1991)ADSCrossRefGoogle Scholar
  19. I. A. Abrikosov, Yu. H. Vekilov, P. A. Korzhavyi, A. V. Ruban, and L. E. Shilkrot, Ab-Initio Calculations of the Electronic Topological Transition in Li-Mg Alloys, Solid State Comm. 83, 867 (1992).ADSCrossRefGoogle Scholar
  20. 12.
    D. D. Johnson and F. J. Pinski, Inclusion of Charge Correlations in Calculations of the Energetics and Electronic-Structure for Random Substitutional Alloys, Phys. Rev. B 48, 11553(1993).ADSCrossRefGoogle Scholar
  21. 13.
    N. Papanikolao, R. Zeller, P. H. Dederichs, and N. Stefanou, Phys. Rev. B 55,4157 (1997).ADSCrossRefGoogle Scholar
  22. 14.
    I. A. Abrikosov and B. Johansson,. Applicability of the coherent-potential approximation in the theory of random alloys, Phys. Rev. B 57,14 164 (1998).Google Scholar
  23. 15.
    Lord Rayleigh, Philos. Mag. 34,481 (1892).zbMATHCrossRefGoogle Scholar
  24. 16.
    J. Korringa, Physica 13, 392 (1947)MathSciNetADSCrossRefGoogle Scholar
  25. W. Kohn and N. Rostoker, Phys. Rev. 94,111 (1954).ADSCrossRefGoogle Scholar
  26. 17.
    I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Order-N Green’s function technique for local environment effects in alloys, Phys. Rev. Lett. 76, 4203 (1996). 11.ADSCrossRefGoogle Scholar
  27. 18.
    I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Locally self- consistent Green’s function approach to the electronic structure problem, Phys. Rev. B 56, 9319(1997).ADSCrossRefGoogle Scholar
  28. 19.
    P. P. Ewald, Ann. Physik 64,253 (1921).ADSzbMATHCrossRefGoogle Scholar
  29. 20.
    J. S. Faulkner, and G. M. Stocks, Calculating Properties With the Coherent-Potential Approximation. Phys. Rev. B 21, 3222 (1980).ADSCrossRefGoogle Scholar
  30. 21.
    B. L. Gyorffy, Phys. Rev. B 5,2382 (1972).ADSCrossRefGoogle Scholar
  31. 22.
    P. Lloyd, Proc. Phys. Soc., London 90,207 (1967).ADSCrossRefGoogle Scholar
  32. 23.
    B. L. Gyorffy and G. M. Stocks, Concentration Waves and Fermi Surfaces in Random Metallic Alloys. Phys. Rev. Lett. 50, 374 (1983).ADSCrossRefGoogle Scholar
  33. 24.
    G. M. Stocks and W. H. Butler, Mass and Lifetime Enhancement Due to Disorder On AgcPd1-c Alloys. Phys. Rev. Letters 48, 55 (1982)ADSCrossRefGoogle Scholar
  34. W. H. Butler and G. M. Stocks, Calculated Electrical-Conductivity and Thermopower of Silver- Palladium Alloys. Phys. Rev. B 8,4217 (1984)ADSCrossRefGoogle Scholar
  35. J. C. Swihart, W. H. Butler, G. M. Stocks, D. M. Nicholson, and R. C. Ward, 1st-Principles Calculation of the Residual Electrical- Resistivity of Random Alloys. Phys. Rev. B 57,1181 (1986).ADSCrossRefGoogle Scholar
  36. 25.
    J. S. Faulkner, Nassrin Moghadam, Yang Wang, and G. M. Stocks, Comparison of the electronic states of alloys from the coherent potential approximation and an order-N calculation. Phys. Rev. B 57, 7653 (1998).ADSCrossRefGoogle Scholar
  37. 26.
    J. S. Faulkner, Yang Wang, and G. M. Stocks, Core level chemical shifts in metallic alloys. Phys. Rev. Lett. 81,1905 (1998).ADSCrossRefGoogle Scholar
  38. 27.
    B. G. Nickel and W. H. Butler, Phys. Rev. Lett. 30,373 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. S. Faulkner
    • 1
  • B. Ujfalussy
    • 2
  • Nassrin Moghadam
    • 2
  • G. M. Stocks
    • 2
  • Yang Wang
    • 3
  1. 1.Alloy Research Center and Dept. of PhysicsFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Metals and Ceramics Div.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Pittsburgh Supercomputer CenterPittsburghUSA

Personalised recommendations