Skip to main content

Tests of the Polymorphous Coherent Potential Approximation

  • Chapter
  • 354 Accesses

Abstract

The coherent potential approximation (CPA) is a powerful mathematical technique for approximating the electronic structure of substitutional solid solution alloys. Most applications of the CPA to date have assumed an isomorphous model of the alloy in which all of the A atoms are assumed to be the same, as are all of the B atoms. The derivation of self-consistent potentials for the alloys within the framework of the CPA and the isomorphous model leads inevitably to the conclusion that the Madelung potential at each site must be zero. The approximate theory resulting from this derivation is called the KKR-CPA. The polymorphous CPA (PCPA) makes use of supercells that contain many atoms, and the Madelung potentials at all of the sites are calculated exactly. PCPA calculations produce a polymorphous alloy model in which every atom in the supercell is different. Tests will be shown that demonstrate the advantages of the PCPA over the KKR-CPA in explaining experiments that depend critically on the charge transfer in an alloy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Faulkner, in Progress in Materials Science, Vol. 27, edited J. W. Christian, P. Haasen, and T. B. Massalski, (Pergamon Press, Oxford, England, 1982).

    Google Scholar 

  2. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  ADS  Google Scholar 

  3. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. W. Kohn and L. J. Sham, Phys. Rev. 140, Al 133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Winter and G. M. Stocks, Calculation of Self-Consistent Potentials For Substitutionally Disordered-Systems With Application to the Agx-PdI-X Alloy Series. Phys. Rev. B 27, 882 (1983)

    Article  ADS  Google Scholar 

  6. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Density-Functional Theory For Random Alloys - Total Energy Within the Coherent-Potential Approximation. Phys. Rev. Lett. 56, 2088 (1986)

    Article  ADS  Google Scholar 

  7. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Total-Energy and Pressure Calculations For Random Substitutional Alloys. Phys. Rev. B 41,9701 (1990).

    Article  ADS  Google Scholar 

  8. G. M. Stocks, D. M. C. Nicholson, Y. Wang, W. A. Shelton, Z. Szotek, and W. M. Temmermann, in High Performance Computing Symposium; Grand Challenges in Computer Simulation, Proceedings of the 1994 Simulation Multiconference, edited by A. M. Tentner, (The Society for Computer Simulation, San Diego, Ca., 1994)

    Google Scholar 

  9. D. M. C. Nicholson, G. M. Stocks, Y. Wang, W. A. Shelton, Z. Szotek, and W. M. Temmermann, Stationary Nature of the Density-Functional Free-Energy - Application to Accelerated Multiple-Scattering Calculations. Phys. Rev. B 50,14686 (1994).

    Google Scholar 

  10. Yang Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson, Z. Szotek, and W. M. Temmerman, Order-N Multiple-Scattering Approach to Electronic-Structure Calculations. Phys. Rev. Lett. 75, 2867 (1995).

    Article  ADS  Google Scholar 

  11. J. S. Faulkner, Yang Wang, and G. M. Stocks, Coulomb energies in alloys. Phys. Rev. B 55,7 492(1997).

    Google Scholar 

  12. L. Reinhard, B. Shönfeld, and G. Kostorz, Short-Range Order in Alpha-Brass, Phys. Rev. B 41, 1727 (1990).

    Article  ADS  Google Scholar 

  13. S. G. Louie, K. Ho, and M. L. Cohen, Self-Consistent Mixed-Basis Approach to the Electronic-Structure of Solids, Phys. Rev. B 19, 1774 (1979)

    Article  ADS  Google Scholar 

  14. J. Neve, B. Sundqvist, and O. Rapp, Electron Band-Structure, Resistivity, and the Electron-Phonon Interaction for Niobium Under Pressure, Phys. Rev. B 28, 629 (1983)

    Article  ADS  Google Scholar 

  15. A. R. Jani, N. E. Brenner, and J. Callaway, Band-Structure and Related Properties of BCC Niobium, Phys. Rev. B 38, 9425 (1988)

    Article  ADS  Google Scholar 

  16. D. M. Nicholson and J. S. Faulkner, Applications of the Quadratic Korringa-Kohn-Rostoker Band-Theory Method, Phys. Rev. B 39, 8187 (1989).

    Article  ADS  Google Scholar 

  17. P. P. Singh and A. Gonis, Electronic-Structure of Metallic Alloys Using Charge-Neutral Atomic Spheres, Phys. Rev. B 49, 1642 (1994).

    Article  ADS  Google Scholar 

  18. I.A. Abrikosov, Yu. H. Vekilov, A. V. Ruban, Fast LMTO-CPA Method for Electronic-Structure Calculations of Disordered Alloys - Application to Cu-Ni and Cu-Au Systems, Phys. Letters A154, 407 (1991)

    Article  ADS  Google Scholar 

  19. I. A. Abrikosov, Yu. H. Vekilov, P. A. Korzhavyi, A. V. Ruban, and L. E. Shilkrot, Ab-Initio Calculations of the Electronic Topological Transition in Li-Mg Alloys, Solid State Comm. 83, 867 (1992).

    Article  ADS  Google Scholar 

  20. D. D. Johnson and F. J. Pinski, Inclusion of Charge Correlations in Calculations of the Energetics and Electronic-Structure for Random Substitutional Alloys, Phys. Rev. B 48, 11553(1993).

    Article  ADS  Google Scholar 

  21. N. Papanikolao, R. Zeller, P. H. Dederichs, and N. Stefanou, Phys. Rev. B 55,4157 (1997).

    Article  ADS  Google Scholar 

  22. I. A. Abrikosov and B. Johansson,. Applicability of the coherent-potential approximation in the theory of random alloys, Phys. Rev. B 57,14 164 (1998).

    Google Scholar 

  23. Lord Rayleigh, Philos. Mag. 34,481 (1892).

    Article  MATH  Google Scholar 

  24. J. Korringa, Physica 13, 392 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  25. W. Kohn and N. Rostoker, Phys. Rev. 94,111 (1954).

    Article  ADS  Google Scholar 

  26. I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Order-N Green’s function technique for local environment effects in alloys, Phys. Rev. Lett. 76, 4203 (1996). 11.

    Article  ADS  Google Scholar 

  27. I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Locally self- consistent Green’s function approach to the electronic structure problem, Phys. Rev. B 56, 9319(1997).

    Article  ADS  Google Scholar 

  28. P. P. Ewald, Ann. Physik 64,253 (1921).

    Article  ADS  MATH  Google Scholar 

  29. J. S. Faulkner, and G. M. Stocks, Calculating Properties With the Coherent-Potential Approximation. Phys. Rev. B 21, 3222 (1980).

    Article  ADS  Google Scholar 

  30. B. L. Gyorffy, Phys. Rev. B 5,2382 (1972).

    Article  ADS  Google Scholar 

  31. P. Lloyd, Proc. Phys. Soc., London 90,207 (1967).

    Article  ADS  Google Scholar 

  32. B. L. Gyorffy and G. M. Stocks, Concentration Waves and Fermi Surfaces in Random Metallic Alloys. Phys. Rev. Lett. 50, 374 (1983).

    Article  ADS  Google Scholar 

  33. G. M. Stocks and W. H. Butler, Mass and Lifetime Enhancement Due to Disorder On AgcPd1-c Alloys. Phys. Rev. Letters 48, 55 (1982)

    Article  ADS  Google Scholar 

  34. W. H. Butler and G. M. Stocks, Calculated Electrical-Conductivity and Thermopower of Silver- Palladium Alloys. Phys. Rev. B 8,4217 (1984)

    Article  ADS  Google Scholar 

  35. J. C. Swihart, W. H. Butler, G. M. Stocks, D. M. Nicholson, and R. C. Ward, 1st-Principles Calculation of the Residual Electrical- Resistivity of Random Alloys. Phys. Rev. B 57,1181 (1986).

    Article  ADS  Google Scholar 

  36. J. S. Faulkner, Nassrin Moghadam, Yang Wang, and G. M. Stocks, Comparison of the electronic states of alloys from the coherent potential approximation and an order-N calculation. Phys. Rev. B 57, 7653 (1998).

    Article  ADS  Google Scholar 

  37. J. S. Faulkner, Yang Wang, and G. M. Stocks, Core level chemical shifts in metallic alloys. Phys. Rev. Lett. 81,1905 (1998).

    Article  ADS  Google Scholar 

  38. B. G. Nickel and W. H. Butler, Phys. Rev. Lett. 30,373 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faulkner, J.S., Ujfalussy, B., Moghadam, N., Stocks, G.M., Wang, Y. (2000). Tests of the Polymorphous Coherent Potential Approximation. In: Meike, A., Gonis, A., Turchi, P.E.A., Rajan, K. (eds) Properties of Complex Inorganic Solids 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1205-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1205-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5440-6

  • Online ISBN: 978-1-4615-1205-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics