Advertisement

Point Defect Energies in L12-Ordered Ni3Al

  • H. Schweiger
  • R. Podloucky
  • W. Püschl
  • M. Spanl
  • W. Pfeiler

Abstract

Experimental investigation of order-order relaxations in Ni3Al by residual resistometry yielded a very high ordering activation energy of about 4.6eV being in correspondence with tracer experiments, where the tracer atom substitutes the Al-atom. Qualitatively, this might be interpreted by breaking of bonds to the 12 surrounding Ni nearest neighbour atoms of the ordered Ll2-lattice. For the purpose of a more fundamental understanding the properties of vacancies and antisites in Ni3Al were studied by means of ab-initio calculations for supercells. Formation energies for Ni- and Al-vacancies were derived using a grandcanonical ensemble. Further, vacancy migration energies were determined successively displacing atoms from their equilibrium position to a vacant nearest neighbour position. Correlated jumps during a jump cycle were also taken into account.

Key words

Ll2-intermetallics point defects defect energies ab-initio calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kozubski and W. Pfeiler, Kinetics of defect recovery and long-range ordering in Ni3Al+B .2. Atomic jump processes studied by “order-order” relaxation experiments. Acta Mater. 44, 1573(1996)CrossRefGoogle Scholar
  2. 2.
    C. Dimitrov, X. Zhang and 0. Dimitrov, Kinetics of long-range order relaxation in Ni3Al: The effect of stoichiometry. Acta Mater. 44, 1691 (1999).CrossRefGoogle Scholar
  3. 3.
    G.F. Hancock, Phys.Stat.Sol. (a) 7, 535 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    K. Hoshino, S.J. Rothman and R.S. Averback, Tracer diffusion in pure and boron-doped Ni3Al. Acta Metall. 36, 1271 (1988).CrossRefGoogle Scholar
  5. 5.
    Y. Minamino, S.B. Jung, T. Yamane and K. Hirao, Diffusion of cobalt, chromium, and titanium in Ni3Al. Metall. Trans. 23A, 2783 (1992).Google Scholar
  6. 6.
    H. Numakura, T. Ikeda, M. Koiwa and A. Alamazouzi, Self-diffusion mechanism in NibasedLl(2) type intermetallic compounds. Phil. Mag. 77, 887 (1998).CrossRefGoogle Scholar
  7. 7.
    Kozubski, R., Long-range order kinetics in Ni3Al-based intermetallic compounds with Ll(2)-type superstructure. Progress Mater. Sci. 41, 1 (1997).CrossRefGoogle Scholar
  8. 8.
    P. Oramus, R. Kozubski, M.C. Cadeville, V. Pierron-Bohnes and W. Pfeiler, Computer simulation of ’order-order’ kinetics in Ll(2) superstructure. Mat. Sci. Eng. A239–240, 777 (1997).Google Scholar
  9. 9.
    Mohri, in: Solid-Solid Phase Transformations, W.C. Johnson, J.M. Howe, D.E. Laughlin and W.A. Soffa, eds., The Minerals, Metals & Materials Society, Warrendale (1994), p. 53.Google Scholar
  10. 10.
    G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).ADSCrossRefGoogle Scholar
  11. 11.
    S.B. Debiaggi, P.M. Decorte, and A.M. Monti, Diffusion by vacancy mechanism in Ni, Al, and Ni3Al: Calculation based on many-body potentials. Phys.Stat.Sol. (B) 195, 37 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmüller,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev B 54, 11196 (1996)Google Scholar
  13. G.Kresse and J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mai. Science 6, 15 (1996).CrossRefGoogle Scholar
  14. 13.
    H.J.F. Jansen and A.J. Freeman, Total-energy full-potential linearized augmented-planewave method for bulk solids - electronic and structural-properties of tungsten. Phys. Rev. B 30, 561 (1984).ADSGoogle Scholar
  15. 14.
    E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic-structure of molecules and surfaces - 02 molecule. Phys. Rev. B24, 864 (1981).ADSCrossRefGoogle Scholar
  16. 15.
    S.M. Foiles and M.S. Daw, Calculation of the defect properties of Ni3Al using the embedded atom method. J. Mat. Res. 2, 5 (1987).ADSCrossRefGoogle Scholar
  17. 16.
    C.L Fu and G.S Painter, Point defects and the binding energies of boron near defect sites in Ni3Al: A first-principles investigation. Acta Mater. 45, 481 (1997).CrossRefGoogle Scholar
  18. 17.
    J. Mayer, B. Meyer, J.S. Oehrens, G. Bester, N. Börnsen and M. Fähnle, Effective formation energies of atomic defects in DO3-Fe3Al: an ab-initio study. Intermetallics 5, 597 (1997).CrossRefGoogle Scholar
  19. 18.
    P. Oramus, R. Kozubski, M.C. Cadeville, V. Pierron-Bohnes and W. Pfeiler, in: Y. Mishin, N.E.B. Cowern, C.R.A. Catlow, D. Farkas, G. Vogl eds. Diffusion Mechanisms in Crystalline Materials, Mat. Res. Soc. Symp. Proc. 527, 185 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • H. Schweiger
    • 1
  • R. Podloucky
    • 1
  • W. Püschl
    • 2
  • M. Spanl
    • 2
  • W. Pfeiler
    • 2
  1. 1.Center for Computational Materials Science and Department for Physical ChemistryUniversity of ViennaViennaAustria
  2. 2.Institut für MaterialphysikUniversity of ViennaViennaAustria

Personalised recommendations