Advertisement

Kinetics of Phase Separation in a Binary Alloy: Influence of the Atomic Mobilities

  • M. Athenes
  • P. Bellon
  • G. Martin

Abstract

An atomistic kinetic model with a vacancy mediated diffusion mechanism is used to study the precipitation kinetics from a supersaturated solution. We show that, for a given alloy thermodynamics, varying the vacancy-solute binding energy affects the contribution of the coagulation process to coarsening both for low and high solute supersaturation. We also observe that varying the temperature affects the phase separation kinetic pathway in agreement with experimental observations, but at variance with kinetic simulations carried out with the standard direct exchange dynamics.

Keywords

Activation Barrier Solute Atom Direct Exchange Cluster Size Distribution Diffusivity Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Wagner and R. Kampmann (1991), in Phase Transformation in Materials (edited by R Haasen). VCH, Weinheim.Google Scholar
  2. [2]
    K. Binder (1991), in Phase Transformation in Materials (edited by R Haasen). VCH, Weinheim.Google Scholar
  3. [3]
    K. Kawasaki (1984), Phys. Rev. 145, 224MathSciNetADSCrossRefGoogle Scholar
  4. [3a]
    K. Kawasaki (1984), Phys. Rev. 148, 375.ADSCrossRefGoogle Scholar
  5. [4]
    J. G. Amar, F. E. Sullivan and R. D. Mountain (1988), Phys. Rev. B 37, 196.ADSCrossRefGoogle Scholar
  6. [5]
    D. A. Huse (1986), Phys. Rev. B, 34 , 7845.ADSCrossRefGoogle Scholar
  7. [6]
    P. Fratzl and O. Penrose (1994), Phys. Rev. B 50, 3477.ADSCrossRefGoogle Scholar
  8. [7]
    C. Frontera, E. Vives, T. Castan, A. Planes (1996), Phys. Rev. B 53, 2886.ADSCrossRefGoogle Scholar
  9. [8]
    M. Lifshitz, and V. V. Slyozov (1961), J. Phys. Chem. Solids 19, 35.ADSCrossRefGoogle Scholar
  10. [9]
    F. Soisson, A. Barbu, and G. Martin (1996), Acta Mater. 44 3789–3800.CrossRefGoogle Scholar
  11. [10]
    M. Athènes, P. Bellon, G. Martin, F. Haider (1996), Acta Mat. 44, 4739.CrossRefGoogle Scholar
  12. [11]
    Girifalco (1964), J. Phys. Chem. Solids, 24, 323.ADSCrossRefGoogle Scholar
  13. [12]
    R. Kikuchi and H. Sato (1969), J. Chem. Phys., 51, 161.ADSCrossRefGoogle Scholar
  14. [13]
    G. Martin (1990), Phys. Rev. B 41 2279.ADSCrossRefGoogle Scholar
  15. [14]
    M. Young and E. W. Elcock (1966), Proc. Phys. Soc. 89 735.ADSCrossRefGoogle Scholar
  16. [15]
    J.-M. Lanore (1974), Rad. Effects, 22 153.CrossRefGoogle Scholar
  17. [16]
    M. Athènes, P. Bellon and G. Martin (1997), Phil. Mag. A, 76, 527.CrossRefGoogle Scholar
  18. [17]
    J. Hoshen, R. Kopelmann (1976), Phys. Rev. B 14 3438.ADSCrossRefGoogle Scholar
  19. [18]
    A. R. Allnatt and A. B. Lidiard (1993), Atomic transport in solids, Cambridge University Press.CrossRefGoogle Scholar
  20. [19]
    J.-L. Bocquet, Y. Limoge and G. Brebec (1996), Physical metallurgy, edited by R. W. Cahn and P. Haasen Amsterdam Elsevier 535.CrossRefGoogle Scholar
  21. [20]
    A. B. Lidiard (1955), Phil. Mag. 46 1218.Google Scholar
  22. [21]
    A. D. LeClaire (1970), Phil. Mag. 21 819.ADSCrossRefGoogle Scholar
  23. [22]
    T. N. Lê, A. Barbu, and F. Maury (1992), Scripta Met. Mater. 26 771.CrossRefGoogle Scholar
  24. [23]
    J. W. Christian, (1975) The theory of transformations in alloys and metals. p. 525. Pergamon Press, Oxford.Google Scholar
  25. [24]
    V. G. Vaks, S. V. Beiden and V. Yu. Dobretsov (1995), Pis’ma v ZhETF 61, 65.ADSGoogle Scholar
  26. [25]
    V. Yu. Dobretsov, G. Martin, F. Soisson and V. G., Vaks (1995), Europhys. Lett. 31, 417.ADSCrossRefGoogle Scholar
  27. [26]
    A. B. Börtz, M. H. Kalos and J. Lebowitz (1975), J. Comp. Phys., 17 10.ADSCrossRefGoogle Scholar
  28. [27]
    H. Müller-Krumbhaar (1974), Phys. Lett. 50A 27.ADSGoogle Scholar
  29. [28]
    S. Hayward, D. W. Heermann, D. W. and K. Binder (1987), J. Stat. Physics 49, 1053–1081.ADSCrossRefGoogle Scholar
  30. [29]
    G. Lironis, D. W. Heermann, D. W. and K. Binder (1989), J. of Phys. A: Math. Gen. 23 L329–L334.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • M. Athenes
    • 1
  • P. Bellon
    • 2
  • G. Martin
    • 1
  1. 1.CEA SaclaySection de Recherche de Metallurgie PhysiqueGif-sur-YvetteFrance
  2. 2.Department of Materials Science and EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations