Advertisement

Kinetic Features of Non-Simplest Alloy Orderings: D03, L12,and L10 Orderings

  • K. D. Belashchenko
  • V. Yu. Dobretsov
  • I. R. Pankratov
  • G. D. Samolyuk
  • V. G. Vaks

Abstract

The earlier-developed master equation approach is used to study kinetic features of alloy orderings with more than two types of ordered domains. We develop a kinetic cluster field method being a kinetic analogue of the known cluster variation method, and present a microscopical model for deformational interactions in concentrated alloys. The described methods are used for extensive simulations of various phase transformations involving D03, L12 and L10 orderings. The simulations reveal a number of interesting microstructural effects, many of them agreeing well with experimental observations.

Keywords

Alloy Model Antiphase Boundary Cluster Variation Method NATO Advance Study Institute Local Order Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Allen S.M. and Cahn J W 1976 Mechanisms of Phase-Transformations Within Miscibility Gap of Fe-Rich Fe-A1 Alloys Acta Met. 24 425Google Scholar
  2. [2]
    Oki K, Matsumura S and Eguchi T 1987 Phase Separation and Domain Structure of Iron-based Ordering Alloys Phase Transitions 10 257CrossRefGoogle Scholar
  3. [3]
    Cahn R W, Siemers P A and Hall E L 1987 The Order-Disorder Transformation in Ni3al and Ni3al-Fe Alloys .2. Phase-Transformations and Microstructures Acta Metall. 35 2753CrossRefGoogle Scholar
  4. [4]
    Matsumura S, Oyama H and Oki K 1989 Dynamical Behavior of Ordering With Phase-Separation in Off- Stoichiometric Fe3si Alloys Mater. Trans., JIM 30 695Google Scholar
  5. [5]
    Loiseau A, Ricolleau C, Potez L and Ducastelle F 1994 Solid-Solid Phase Transformations ed W C Johnson et al (Warrendale: The MMM Society) p 385Google Scholar
  6. [6]
    Potez L and Loiseau A 1994 High-Resolution Electron Microscopy Studies of Antiphase Boundaries in Cu3Au J. Interface Sci. 2 91Google Scholar
  7. [7]
    Schmitz G, Hono K and Haasen P 1994High-Resolution Electron-Microscopy of the Early Decomposition Stage of Al-Li Alloys Acta Metall. Mater. 42 201CrossRefGoogle Scholar
  8. [8]
    Korner A 1995 Analysis of the Evolution of Antiphase Boundaries in a Fe-Al Alloy During in-Situ Transmission Electron-Microscopy Heating Phil. Mag. Lett. 72 21ADSCrossRefGoogle Scholar
  9. [9]
    Loiseau A 1996 Curr. Opin. Solid State Mater. Sci. 1 369Google Scholar
  10. [10]
    Chen L-Q, Wang Y and Khachaturyan A G 1992 Kinetics of Tweed and Twin Formation during an Ordering Transition in a Substitutional Solid Solution Phil. Mag. Lett. 65 15ADSCrossRefGoogle Scholar
  11. [11]
    Chen L-Q, Wang Y Z and Khachaturyan A G 1994 Statics and Dynamics of Alloy Phase Transformations (NATO Advanced Study Institute, Series B: Physics 319) ed A Gonis and P E A Turchi (New York: Plenum) p 587Google Scholar
  12. [12]
    Dobretsov V Yu, Vaks V G and Martin G 1996 Kinetic features of phase separation under alloy ordering Phys. Rev. B 54 3227ADSGoogle Scholar
  13. [13]
    Martin G 1990 Atomic Mobility in Cahn Diffusion-Model Phys. Rev. B 41 2279ADSGoogle Scholar
  14. [14]
    Gouyet J F 1993 Atomic Mobility and Spinodal-Decomposition Dynamics in Lattice Gases - Simple Discrete Models Europhys. Lett. 21 335ADSCrossRefGoogle Scholar
  15. [15]
    Vaks V G, Beiden S V and Dobretsov V Yu 1995 Mean-Field Equations For Configurational Kinetics of Alloys At Arbitrary Degree of Nonequilibrium Pis. Zh. Eksp. Teor. Fiz. 61 65 (Engl. Transl. JETP Lett. 61 68)Google Scholar
  16. [16]
    Vaks V G 1996 Master equation approach to the configurational kinetics of nonequilibrium alloys: Exact relations, H-theorem, and cluster approximations Pis. Zh. Eksp. Teor. Fiz. 63 447 (Engl. Transl. JETP Lett. 63 471)Google Scholar
  17. [17]
    Belashchenko K D and Vaks V G 1998 The master equation approach to configurational kinetics of alloys via the vacancy exchange mechanism: general relations and features of microstructural evolution J. Phys.: Condens. Matter 10 1965ADSCrossRefGoogle Scholar
  18. [18]
    Kikuchi R and Cahn J W 1979 Theory of Interphase and Antiphase Boundaries in Fcc Alloys Acta Met. 27 1337CrossRefGoogle Scholar
  19. [19]
    Mohri T, Sanchez J M and de Fontaine D 1985 Short-Range Order Diffuse Intensity Calculations in the Cluster Variation Method Acta Met. 33 1171CrossRefGoogle Scholar
  20. [20]
    Finel A 1994 Statics and Dynamics of Alloy Phase Transformations (NATO Advanced Study Institute, Series B: Physics 319) ed A Gonis and P E A Turchi (New York: Plenum) p 495Google Scholar
  21. [21]
    Vaks V G and Samolyuk G D 1999 On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys Zh. Eksp. Teor. Fiz. 115 158 (Engl. Transl. Sov. Phys.-JETP 88 89)Google Scholar
  22. [22]
    Yang C N 1945 Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices J. Chem. Phys. 13 66ADSCrossRefGoogle Scholar
  23. [23]
    Khachaturyan A G 1983 Theory of Structural Phase Transformations in Solids (New York: Wiley)Google Scholar
  24. [24]
    Chassagne F, Bessiere M, Calvayrac Y, Cenedese P and Lefebvre S 1989 X-Ray Diffuse-Scattering Investigation of Different States of Local Order in Ni-Al Solid-Solutions Acta Met. 37 2329CrossRefGoogle Scholar
  25. [25]
    Hasaka M 1980 Ordering and Phase Separation in the Fe-Al Alloy Trans. JIM 21 660Google Scholar
  26. [26]
    Inden G 1974 Ordering and Segregation Reactions in Bcc Binary-Alloys Acta Metall. 22 945CrossRefGoogle Scholar
  27. [27]
    Wang Y, Banerjee D, Su C C and Khachaturyan A G 1998 Acta mater. 46 2983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • K. D. Belashchenko
    • 1
  • V. Yu. Dobretsov
    • 1
  • I. R. Pankratov
    • 1
  • G. D. Samolyuk
    • 1
  • V. G. Vaks
    • 1
  1. 1.Russian Research Centre ‘Kurchatov Institute’MoscowRussia

Personalised recommendations