Theoretical Study of Spinodal Disordering and Disordering Relaxation

  • Tetsuo Mohri


By employing Cluster Variation and Path Probability Methods, disordering relaxation kinetics of L10 ordered phase at 1:1 stoichiometric composition is studied. The instability temperature above the order-disorder transition temperature is termed spinodal disordering temperature at which the susceptibility is confirmed to diverge. The temperature dependence of the relaxation time behaves not monotonically but increases towards the spinodal disordering temperature. This is believed to be the pseudo-critical slowing down phenomenon reported for the first-order transition.


Path Variable Cluster Probability Path Probability Range Order Parameter Pair Interaction Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee.S, Urban,K. and Wilkens,M.,1984, Order-disorder transformation ini Ni4Mo under electron irradiation in a high-voltage electron microscope,Acta metall.32,299.CrossRefGoogle Scholar
  2. Bolton, H.C. and Leng, C.A.,1975,Relaxation near a first-order transition in an AB3 alloy, Phys. Rev. B11,2069.ADSGoogle Scholar
  3. Bragg,W.L. and Williams,E.J.1934, The effect of thermal agitation on atomic arrangement in alloys Proc.Roy.Soc.A145;69.Google Scholar
  4. Connolly, J.W.D. and Williams, A.R.,1983, Density functional theory applied to phase transformations in transition-metal alloys, Phys. Rev. B27,5169.ADSGoogle Scholar
  5. Dahmani, C.E., Cadeville, M.C. and Pierron-Bohnes, V.,1985, Temperature dependences of atomic order relaxations in Ni-Pt and Co-Pt alloys, Acta metali 33 ; 369.CrossRefGoogle Scholar
  6. de Fontaine, D., 1975, k-space symmetry rules for order-disorder reactions, Acta metali.23 ; 553.CrossRefGoogle Scholar
  7. Glauber, R.J.,1953, Time-dependent statistics of the ising model,J. Math. Phys. 4,294.MathSciNetADSCrossRefGoogle Scholar
  8. Kaburagi, M. and Kanamori, J.,1975,A method of determining the ground state of the extended-range classical lattice gas model, Prog. Theoret. Phys.54,30.ADSCrossRefGoogle Scholar
  9. Kawasaki, K., 1966, Duffusion constants near the critical point for time-dependent ising models.I ,Phys. Rev. 145;224.MathSciNetADSGoogle Scholar
  10. Kikuchi, R.,1951, A theory of cooperative phenomena, Phys. Rev. 81; 998.MathSciNetADSGoogle Scholar
  11. Kikuchi, R.,1966, The path probability method, Prog. Theoret. Phys. Kyoto, Suppl. 35; 1.ADSCrossRefGoogle Scholar
  12. Kikuchi, R.,1974, Superposition approximation and natural iteration calculation in cluster-variation method, Chem. Phys. 60 ; 1071.ADSGoogle Scholar
  13. Mohri, T., Sanchez J.M. and de Fontaine, D., 1985a, Short range order diffuse intensity calculations in the cluster variation method, Acta metali. 33; 1463.CrossRefGoogle Scholar
  14. Mohri, T., Sanchez ,J.M. and de Fontaine, D., 1985b, Binary ordering prototype phase diagrams in the cluster variation approximation, Acta metali. 33; 1171.ADSCrossRefGoogle Scholar
  15. Mohri, T.,Terakura, K.,Oguchi, T and Watanabe, K., 1988, First principles calculation of thermodynamic properties of noble-metal alloys, Acta metali 36 ; 547.CrossRefGoogle Scholar
  16. Mohri,T.,Terakura, K., Takizawa, S. and Sanchez, J.M.,1991, First-principles study of short range order and instabilities in Au-Cu, Au-Ag and Au-Pd alloys, Acta metali. 39,493.CrossRefGoogle Scholar
  17. Mohri, T.,1990, Kinetic path for a relaxation process of an f.c.c. disordered phase, Acta metali. 3S;2455.CrossRefGoogle Scholar
  18. Mohri,T., 1994a, Spinodal ordering evidenced by PPM, Statics and Dynamics of Alloy Phase Transformations, Ed. by P.E.A.Turchi and A. Gonis, Plenum Press, New York;665.CrossRefGoogle Scholar
  19. Mohri, T., 1994b, Atomic ordering process and a phase diagram, Solid->Solid Phase Transformations, Ed. by W.C. Johnson et al., The Minerals, Metals and Materials Society;53.Google Scholar
  20. Mohri, T.,1996, Kinetic path and fluctuations calculated by the path probability method, Theory and Applications of the Cluster Variation and Path Probability Methods,Ed. by J.L.Moran-Lopez ad J.M. Sanchez, Plenum Press, New York;37.CrossRefGoogle Scholar
  21. Mohri, T.,1999, Configurational thermodynamics and kinetics studied by cluster variation and path probability methods, Solid-Solid Phase Transformations, The Japan Institute of Metals Proceedings, Vol. 5(JIMIC-3), ed. by M. Koiwa, K.Otsuka and T.Miyazaki.;669.Google Scholar
  22. Mohri ,T.,2000a, Pseudo critical slowing down within the CVM and PPM, Modelling and Simulation in Mat. Sci. and Engr., in press.Google Scholar
  23. Mohri,T.,2000b, in preparation.Google Scholar
  24. Ozolins,V., Wolverton, C. and Zunger, A., 1998a, Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures,Phys. Rev. B57; 6427.ADSGoogle Scholar
  25. Ozolins,V., Wolverton, C. and Zunger, A., 1998b, First-principles theory of vibrational effects on the phase stability of Cu-Au compounds and alloys, Phys. Rev.B58; R5897.ADSGoogle Scholar
  26. Richards, M.J. and Cahn, J.W.,1971,Pairwise interactions and the ground state of ordered binary alloys, Acta metall. 19;1263.CrossRefGoogle Scholar
  27. Sanchez, J.M., 1981,Pair correlations in the cluster variation approximation, Physica 111A;200.ADSGoogle Scholar
  28. Sanchez, J.M. and de Fontaine, D.,1978, The fcc ising model in the cluster variation approximation,Phys. Rev. B17; 2926.ADSGoogle Scholar
  29. Sanchez, J.M. and de Fontaine, D.,1980, Ordering in fcc lattices with first- and second-neighobr interactions, Phys. Rev. B21; 216.ADSGoogle Scholar
  30. Sanchez, J.M., Ducastelle, F. and Gratias, D., 1984, Generalized cluster description of multicomponent systems, Physica, 128A; 334.MathSciNetADSGoogle Scholar
  31. Takeda,S., Kulik,J. and de Fontaine,D.,1987,Spinodal ordering beyond the Lifshitz point in Cu3Pd observed by high voltage electron microscopy, Acta metali. 35,2243.CrossRefGoogle Scholar
  32. Terakura,K., Oguchi, T., Mohri,T. and Watanabe, K., 1987, Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au and Ag-Au systems,Phys. Rev. B35 ;2169ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Tetsuo Mohri
    • 1
  1. 1.Division of Materials Science and Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations