Skip to main content

Food-Entrainable Oscillators in Mammals

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

In the battle against entropy, living organisms require sufficient energy intake to survive long enough to reproduce. Consequently, strong selective pressures must have shaped efficient feeding strategies. For foraging omnivores and carnivores, some food sources may be available only during temporal windows within the day and these may change during seasons. For herbivores, food sources are more constant on a daily basis, but it may be advantageous to feed only at certain times of day to avoid predators. Thus, the time of food availability and the time of feeding can be important factors in survival. In addition to relying on external geophysical cues, animals can use endogenous circadian clocks to generate optimal temporal patterns of behavior, including feeding. The purpose of this chapter is to present evidence that many mammals have a separate circadian clock system that responds to food, rather than to light, as a zeitgeber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., & Sugimoto, S. (1987). Food-anticipatory response to restricted food access based on the pigeon’s biological clock. Animal Learning Behavior, 15, 353–359.

    Google Scholar 

  • Abe, H., & Rusak, B. (1992). Anticipatory activity and entrainment of circadian rhythms in Syrian hamsters exposed to restricted palatable diets. American Journal of Physiology, 263, R116-R124.

    PubMed  CAS  Google Scholar 

  • Abe, H., Kida, M., Tsuji, K, & Mano, T. (1989). Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiology and Behavior, 45, 397–401.

    PubMed  CAS  Google Scholar 

  • Andrews, R. V. (1968). Temporal secretory responses of cultured hamster adrenal glands. Comparative Biochemistry and Physiology, 26, 179–193.

    PubMed  CAS  Google Scholar 

  • Apelgren, K N., Frim, D. M., Harling-Berg, C. J., Gander, P. H., & Moore-Ede, M. C. (1985). Effectiveness of cyclic intragastric feeding as a circadian zeitgeber in the squirrel monkey. Physiology and Behavior, 34, 335–340.

    PubMed  CAS  Google Scholar 

  • Aschoff, J. (1987). Effects of periodic availability of food on circadian rhythms. In T. Hiroshige & K Honma (Eds.), Comparative aspects of circadian clocks (pp. 19–40). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Aschoff, J. (1991). Activity in anticipation and in succession of a daily meal. Bolletino Societa Italiana di Biologia Sperimentale, 67, 213–228.

    CAS  Google Scholar 

  • Aschoff, J., & von Goetz, C. (1986). Effects of feeding cycles on circadian rhythms in squirrel monkeys. Journal of Biological Rhythms, 1, 267–276.

    PubMed  CAS  Google Scholar 

  • Aschoff, J., von Goetz, C., & Honma, K (1983). Restricted feeding in rats: Effects of varying feeding cycles. Zeitschrift fur Tierpsychologie, 63, 91–111.

    Google Scholar 

  • Aschoff, J., von Goetz, C., Wildgruber, C. & Weyer, R. A. (1986). Meal timing in humans during isolation without time cues. Journal of Biological Rhythms, 1, 151–162.

    PubMed  CAS  Google Scholar 

  • Balsalobre, A., Damiola, F., & Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell, 93, 929–937.

    PubMed  CAS  Google Scholar 

  • Bays, M. E., & Stephan, E K (1992). Entrainment of anticipatory licking to nutritious solutions. Society for Research on Biological Rhythms Abstracts, 83, 82.

    Google Scholar 

  • Biebach, H., Falk, H., & Krebs, J. R. (1991). The effect of constant light and phase shifts on a learned time-place association in garden warblers (Sylvia borin): Hourglass or circadian clock? Journal of Biological Rhythms, 6, 353–365.

    PubMed  CAS  Google Scholar 

  • Bolles, R. C., & Moot, S. A. (1973). The rat’s anticipation of two meals a day. Journal of Comparative Physiology and Psychology, 83, 510–514.

    CAS  Google Scholar 

  • Bolles, R. C., & Stokes, L. W. (1965). Rat’s anticipation of diurnal and a-diurnal feeding. Journal of Comparative Physiology and Psychology, 60, 290–294.

    CAS  Google Scholar 

  • Boulos, Z., & Logothetis, D. E. (1990). Rats anticipate and discriminate between two daily feeding times. Physiology and Behavior, 48, 523–529.

    PubMed  CAS  Google Scholar 

  • Boulos, Z., & Terman, M. (1980). Food availability and daily biological rhythms. Neuroscience and Biobehavioral Reviews, 4, 119–131.

    PubMed  CAS  Google Scholar 

  • Boulos, Z., Rosenwasser, A. M., & Terman, M. (1980). Feeding schedules and the circadian organization of behavior in the rat. Behavioral Brain Research, 1, 39–65.

    CAS  Google Scholar 

  • Boulos, Z., Frim, D. M., Dewey, L. K, & Moore-Ede, M. C. (1989). Effects of restricted feeding schedules on circadian organization in squirrel monkeys. Physiology and Behavior, 45, 507–516.

    PubMed  CAS  Google Scholar 

  • Brinkhof, M. W. G., Daan, S., & Strubbe, J.H. (1998). Forced dissociation of food-and light-entrainable circadian rhythms of rats in a skeleton photoperiod. Physiology and Behavior, 65, 225–231.

    PubMed  CAS  Google Scholar 

  • Bunning, E. (1973). The physiological clock. New York: Springer-Verlag. Challet, E., Malan, A., & Pevet, P. (1996a). Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neuroscience Letters, 211, 1–4.

    Google Scholar 

  • Challet, E., Pévet, P., & Malan, A. (1996b). Intergeniculate leaflet lesion and daily rhythms in food-restricted rats fed during daytime. Neuroscience Letters, 216, 214–218.

    CAS  Google Scholar 

  • Challet, E., Pévet, P., & Malan, A. (1997a). Lesions of the serotonergic terminals in the suprachiasmatic nuclei limits the phase advance of body temperature rhythm in food-restricted rats fed during daytime. Journal of Biological Rhythms, 12, 235–244.

    CAS  Google Scholar 

  • Challet, E., Pévet, P., Lakhdar-Ghazal, N., & Malan, A. (1997b). Ventromedial nuclei of the hypothalamus are invoved in the phase advance of temperature and activity rhythms in food-restricted rats fed during daytime. Brain Research Bulletin, 43, 209–218.

    CAS  Google Scholar 

  • Challet, E., Pévet, P., Vivien-Roels, B., & Malan, A. (1997c). Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. Journal of Biological Ryhthms, 12, 65–79.

    CAS  Google Scholar 

  • Chandrashekaran, M. K (1982). Social cues and circadian rhythms. Current Science, 51, 158–167.

    Google Scholar 

  • Choi, S., Wong, L. S., Yamat, C., & Dallman, M. E (1998). Hypothalamic ventromedial nuclei amplify circadian rhythms: Do they contain a food-entrained endogenous oscillator? Journal of Neuroscience, 18, 3843–3852.

    PubMed  CAS  Google Scholar 

  • Clarke, J. D., & Coleman, G. J. (1986). Persistent meal-associated rhythms in SCN-lesioned rats. Physiology and Behavior, 36, 105–113.

    PubMed  CAS  Google Scholar 

  • Coleman, G. J., & Hay, M. (1990). Anticipatory wheel running in behaviorally anosmic rats. Physiology and Behavior, 47, 1145–1151.

    PubMed  CAS  Google Scholar 

  • Coleman, G. J., Harper, S., Clarke, J. D., & Armstrong, S. (1982). Evidence for a separate meal-associated oscillator in the rat. Physiology and Behavior, 29, 107–115.

    PubMed  CAS  Google Scholar 

  • Coleman, G. J., O’Reilly, H. M., & Armstrong, S. M. (1989). Food-deprivation-induced phase shifts in Sminthopsis macroura frogatti. Journal of Biological Rhythms, 4, 49–60.

    PubMed  CAS  Google Scholar 

  • Comperatore, C. A.,&Stephan, F. K. (1987). Entrainment of duodenal activity to periodic feeding. Journal of Biological Rhythms, 2, 227–242.

    PubMed  CAS  Google Scholar 

  • Comperatore, C. A., & Stephan, F. K. (1990). Effects of vagotomy on entrainment of activity rhythms to food access. Physiology and Behavior, 47, 671–678.

    PubMed  CAS  Google Scholar 

  • Davidson, A.J. & Stephan, F. K. (1998). Circadian food anticipation persists in capsaicin deafferented rats. Journal of Biological Rhythms, 13, 422–429.

    PubMed  CAS  Google Scholar 

  • Davidson, A. J., Sc Stephan, F. K (1999a). Plasma glucagon, glucose, insulin, and motilin in rats anticipating daily meals. Physiology and Behavior, 66, 309–315.

    CAS  Google Scholar 

  • Davidson, A. J., & Stephan, F. K (1999b). Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions. American Journal of Physiology, 277, R1376–R1384.

    CAS  Google Scholar 

  • Davidson, A. J., Cappendijk, S. L. T., & Stephan, F. K (2000). Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. American Journal of Physiology, 278, R1296–R1304.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., & Gwinner, E. (1992). Different circadian pacemakers control feeding and locomotor activity rhythms in European starlings. Journal of Comparative Physiology A, 171, 63–67.

    Google Scholar 

  • Edmonds, S. C., Sc Adler, N. T. (1977a). Food and light as entrainers of circadian running activity in the rat. Physiology and Behavior, 18, 915–919.

    CAS  Google Scholar 

  • Edmonds, S. C., & Adler, N. T. (1977b). The multiplicity of biological oscillators in the control of circadian running activity in the rat. Physiology and Behavior, 18, 921–930.

    CAS  Google Scholar 

  • Escobar, C., Diaz-Munoz, M., Encinas, F., & Aguilar-Roblero, R. (1998). Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. American Journal of Physiology, 274, R1309–R1316.

    PubMed  CAS  Google Scholar 

  • Frisch, B., & Aschoff, J. (1987). Circadian rhythms in honeybees: Entrainment by feeding cycles. Physiological Entomology, 12, 41–49.

    Google Scholar 

  • Gibbs, F. P. (1979). Fixed interval feeding does not entrain the circadian pacemaker in blind rats. American Journal of Physiology, 236, R249–R253.

    PubMed  CAS  Google Scholar 

  • Hardeland, R. (1973a). Circadian rhythmicity in cultured liver cells. I. Rhythms in tyrosine aminotransferase activity and inducibility and in [3H] leucine incorporation. InternationalJournal of Biochemistry, 4, 589–590.

    Google Scholar 

  • Hardeland, R. (1973b). Circadian rhythmicity in cultured liver cells. II. Re-induction of rhythmicity in tyrosine transaminase activity. International Journal of Biochemistry, 4, 591–595.

    CAS  Google Scholar 

  • Hau, M., & Gwinner, E. (1992). Circadian entrainment by feeding cycles in house sparrows, Passer domesticus. Journal of Comparative Physiology, 170, 403–409.

    PubMed  CAS  Google Scholar 

  • Holloway, W. R., Tsui, H. W., Grota, L. J., & Brown, G. M. (1979). Melatonin and corticosterone regulation: Feeding time or the light:dark cycle? Life Science, 25, 1837–1842.

    CAS  Google Scholar 

  • Honma, K, Honma, S., & Hiroshige, T. (1984). Feeding-associated corticosterone peak in rats under various feeding cycles. American Journal of Physiology, 246, R721–R726.

    PubMed  CAS  Google Scholar 

  • Honma, S., Honma, K, Nagasaka, T., & Hiroshige, T. (1987). The ventromedial hypothalamic nucleus is not essential for the prefeeding corticosterone peak in rats under restricted daily feeding. Physiology and Behavior, 39, 211–215.

    PubMed  CAS  Google Scholar 

  • Honma, S., Kanematsu, N., & Honma, K (1992). Entrainment of methamphetamine-induced locomotor activity rhythm to feeding cycles in SCN-lesioned rats. Physiology and Behavior, 52, 843–850.

    PubMed  CAS  Google Scholar 

  • Inouye, S. T. (1982a). Restricted daily feeding does not entrain circadian rhythms of the suprachiasmatic nucleus in the rat. Brain Research, 232, 194–199.

    CAS  Google Scholar 

  • Inouye, S. T. (1982b). Ventromedial hypothalamic lesions eliminate anticipatory activities of restricted daily feeding schedules in the rat. Brain Research, 250, 183–187.

    CAS  Google Scholar 

  • Inouye, S. T. (1983). Does the ventromedial hypothalamic nucleus contain a self-sustained circadian oscillator associated with periodic feedings? Brain Research, 279, 53–63.

    PubMed  CAS  Google Scholar 

  • Jilge, B. (1991). Restricted feeding: A nonphotic zeitgeber in the rabbit. Physiology and Behavior, 51,157–166.

    Google Scholar 

  • Jilge, B. (1995). Ontogeny of the rabbit’s circadian rhythms without an external zeitgeber. Physiology and Behavior, 58, 131–140.

    PubMed  CAS  Google Scholar 

  • Jilge, B., & Stahle, H. (1993). Restricted food access and light-dark: Impact of conflicting zeitgebers on circadian rhythms of the rabbit. American Journal of Physiology, 264, R708–R715.

    PubMed  CAS  Google Scholar 

  • Kalsbeek, A., Barassin, S, van Heerikhuize, J. J., van der Vliet, & Buijs, R. M. (2000) Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light—dark cycle. Journal of Biology Rhythms, 15, 57–66.

    CAS  Google Scholar 

  • Kennedy, G. A., Coleman, G. J., & Armstrong, S. M. (1990). The effect of restricted feeding on the wheel-running activity rhythms of the predatory marsupial Dasyurus viverrinus. Journal of Comparative Physiology, 166, 607–618.

    Google Scholar 

  • Kennedy, G. A., Coleman, G. J., & Armstrong, S. M. (1991). Restricted feeding entrains circadian wheel-running activity rhythms of the kowari. American Journal of Physiology, 261, R819—R827.

    PubMed  Google Scholar 

  • Kennedy, G. A., Coleman, G. J. & Armstrong, S. M. (1995). Entrainment of circadian wheel-running rhythms of the northern brown bandicoot, Isoodon macrourus, by daily restricted feeding schedules. Chronobiology International, 12, 176–187.

    Google Scholar 

  • Kennedy, G. A., Coleman, G. J., & Armstrong, S. M. (1996). Daily restricted feeding effects on the circadian activity rhythms of the stripe-faced dunnart, Sminthopsis macrura. Journal of Biological Rhythms, 11, 188–195.

    PubMed  CAS  Google Scholar 

  • Klein, D. C., Moore, R. Y., Sc Reppert, S. M. (1991). Suprachiasmatic nucleus: The mind’s clock. New York: Oxford University Press.

    Google Scholar 

  • Krieger, D. T. (1974). Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology, 95, 1195–1201.

    PubMed  CAS  Google Scholar 

  • Krieger, D. T. (1980). Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity. Endocrinology, 106, 649–654.

    PubMed  CAS  Google Scholar 

  • Krieger, D. T., & Hauser, H. (1978). Comparison of synchronization of circadian corticosteroid rhythms by photoperiod and food. Proceedings of the National Academy of Sciences of the USA, 75, 1577–1581.

    PubMed  CAS  Google Scholar 

  • Krieger, D. T., Hauser, H., & Krey, L. C. (1977). Suprachiasmatic nuclear lesions do not abolish foodshifted circadian adrenal and temperature rhythmicity. Science, 197, 398–399.

    PubMed  CAS  Google Scholar 

  • Kurumiya, S., & Kawamura, H. (1991). Damped oscillation of the lateral hypothalamic multineuronal activity synchronized to daily feeding schedules in rats with suprachiasmatic nucleus lesions. Journal of Biological Rhythms, 6, 115–127.

    PubMed  CAS  Google Scholar 

  • Marchant, E. G., & Mistlberger, R. E. (1997). Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Research, 765, 273–282.

    PubMed  CAS  Google Scholar 

  • Mather, J. E. (1981). Wheel-running activity: a new interpretation. Mammal Review, 11, 41–51.

    Google Scholar 

  • Meyer-Lohman, J. (1955). Ãœber den einfluss taglicher futtergaben auf die 24-stunden periodik der lokomotorischen activität weisser mäuse. Pflügers Archiv, 260, 292–305.

    Google Scholar 

  • Mistlberger, R. E. (1992a). Non-photic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters. Behavioral Neuroscience, 106, 192–202.

    CAS  Google Scholar 

  • Mistlberger, R. E. (1992b). Anticipatory activity rhythms under daily schedules of water access in the rat. Journal of Biological Rhythms, 7, 149–160.

    CAS  Google Scholar 

  • Mistlberger, R. E. (1993). Circadian properties of anticipatory activity to restricted water access in suprachiasmatic nuclei-ablated hamsters. American Journal of Physiology, 264, R22—R29.

    PubMed  Google Scholar 

  • Mistlberger, R. E. (1994). Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neuroscience Biobehavioral Reviews, 18, 171–195.

    CAS  Google Scholar 

  • Mistlberger, R. E., & Marchant, E. G. (1999). Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat. Physiology and Behavior, 66, 329–335.

    PubMed  CAS  Google Scholar 

  • Mistlberger, R. E., & Mumby, D. G. (1992). The limbic system and food-anticipatory circadian rhythms in the rat: Ablation and dopamine blocking studies. Behavioral Brain Research, 47, 159–168.

    CAS  Google Scholar 

  • Mistlberger, R. E., & Rechtschaffen, A. (1984). Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiology and Behavior, 33, 227–235.

    PubMed  CAS  Google Scholar 

  • Mistlberger, R. E., & Rechtschaffen, A. (1985). Periodic water availability is not a potent zeitgeber for entrainment of circadian locomotor rhythms in rats. Physiology and Behavior, 34, 17–22.

    PubMed  CAS  Google Scholar 

  • Mistlberger, R. E., & Rusak, B. (1987). Palatable daily meals entrain anticipatory activity rhythms in free feeding rats: Dependence on meal size and nutrient content. Physiology and Behavior, 41, 219–226.

    PubMed  CAS  Google Scholar 

  • Mistlberger, R. E., & Rusak, B. (1988). Food-anticipatory circadian rhythms in rats with paraventricular and lateral hypothalamic ablations. Journal of Biological Rhythms, 3, 277–291.

    Google Scholar 

  • Mistlberger, R. E., Houpt, T. A., & Moore-Ede, M. C. (1990a). Characteristics of food-entrained circadian rhythms in rats during long-term exposure to constant light. Chronobiology International, 7, 383–391.

    CAS  Google Scholar 

  • Mistlberger, R. E., Houpt, T. A., & Moore-Ede, M. C. (1990b). Food-anticipatory rhythms under 24-hour schedules of limited access to single macronutrients. Journal of Biological Rhythms, 5, 35–46.

    CAS  Google Scholar 

  • Mistlberger, R. E., Houpt, T. A., & Moore-Ede, M. C. (1990c). Effects of aging on food-entrained circadian rhythms in the rat. Neurobiology of Aging, 11, 619–624.

    CAS  Google Scholar 

  • Mistlberger, R. E., de Groot, M. H. M., Bossert, J. M., & Marchant, E. G. (1996). Discrimination of circadian phase in the rat: Role of light-and food-entrainable pacemakers. Brain Research, 739,12–18.

    PubMed  CAS  Google Scholar 

  • Moreira, A. C., & Krieger, D. T. (1982). The effects of subdiaphragmatic vagotomy on circadian corticosterone rhythmicity in rats with continuous or restricted food access. Physiology and Behavior, 28, 789–790.

    Google Scholar 

  • Nelson, W., Nichols, G., Halberg, F., & Kottke, G. (1973). Interacting effects of lighting [LD (12:12)] and restricted feeding (4h-24h) on circadian temperature rhythms of mice. International Journal of Chronobiology, 1, 347.

    Google Scholar 

  • O’Reilly, H., Armstrong, S. M., Sc Coleman, G. J. (1986). Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuriodes byrnei. Physiology and Behavior, 38, 471–476.

    PubMed  Google Scholar 

  • Ottenweller, J. E., Tapp, W. N., & Natelson, B. N. (1990). Phase shifting the light-dark cycle resets the food-entrainable circadian pacemaker. American Journal of Physiology, 258, R994–R1000.

    PubMed  CAS  Google Scholar 

  • Persons, J. E., Stephan, F. K, & Bays, M. E. (1993). Diet-induced obesity attenuates anticipation of food access in rats. Physiology and Behavior, 54, 55–64.

    PubMed  CAS  Google Scholar 

  • Philippens, K. M. H. (1980). Synchronization of rhythms to meal timing. In L. E. Scheving & F. Halberg (Eds.), Chronobiology: Principles and applications to shifts in schedules (pp. 403–416). Rockville, MD: Sijthoff & Noordhoff.

    Google Scholar 

  • Philippens, K. M. H., von Mayersbach, H., & Scheving, L. E. (1977). Effects of scheduling of meal-feeding at different phases of the circadian system in rats. Journal of Nutrition., 107, 176–193.

    PubMed  CAS  Google Scholar 

  • Phillips, D. L., Rautenberg, W., Rashotte, M. E., Sc Stephan, F. K. (1993). Evidence for a separate foodentrainable circadian oscillator in the pigeon. Physiology Behavior, 53, 1105–1113.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 106, 223–252.

    Google Scholar 

  • Pittendrigh, C. S., Sc Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: pacemaker as a clock. Journal of Comparative Physiology, 106, 291–331.

    Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976c). A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 106, 333–355.

    Google Scholar 

  • Rashotte, M. E., & Stephan, F. K. (1996). Coupling between light-and food-entrainable oscillators in pigeons. Physiology and Behavior, 59, 1005–1010.

    PubMed  CAS  Google Scholar 

  • Richter, C. P. (1922). A behavioristic study of the activity of the rat. Comparative Psychology Monographs, 1, 1–54.

    Google Scholar 

  • Rosenwasser, A. M., Pelchat, R. J., & Adler, N. T. (1984). Memory for feeding time: Possible dependence on coupled circadian oscillators. Physiology and Behavior, 32, 25–30.

    PubMed  CAS  Google Scholar 

  • Rosenwasser, A. M., Schulkin, J., Sc Adler, N. T. (1985). Circadian wheel-running activity of rats under schedules of limited daily access to salt. Chronobiology International, 2, 115–119.

    PubMed  CAS  Google Scholar 

  • Rosenwasser, A. M., Schulkin, J., Sc Adler, N. T. (1988). Anticipatory appetitive behavior of adrenalectomized rats under circadian salt-access schedules. Animal Learning Behavior, 16, 324–329.

    Google Scholar 

  • Rusak, B., Mistlberger, R. E., Losier, B., & Jones, C. H. (1988). Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. Journal of Comparative Physiology, 164, 165–171.

    PubMed  CAS  Google Scholar 

  • Saito, M., Murakami, E., Nishida, T., Fujisawa, Y., & Suda, M. (1976). Circadian rhythms of digestive enzymes in the small intestine of the rat. II. Effects of fasting and refeeding. Journal of Biochemistry, 80, 563–568.

    PubMed  CAS  Google Scholar 

  • Saito, M., Kato, H., & Suda, M. (1980). Circadian rhythm of intestinal disaccharidases of rats fed with adiurnal periodicity. American Journal of Physiology, 238, G97–G101.

    PubMed  CAS  Google Scholar 

  • Sanchez-Vazquez, F. J., Madrid, J. A., Zamora, S., & Tabata, M. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. Journal of Comparative Physiology A, 181, 121–131.

    Google Scholar 

  • Scheving, L. E., Tsai, T. H., Powell, E. W., Pasley, J. N., Halberg, F., & Dunn, J. (1983a). Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in [5H]-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone. Anatomical Record, 205, 239–249.

    CAS  Google Scholar 

  • Scheving, L. E., Tsai, T. H., & Scheving, L. A. (1983b). Chronobiology of the intestinal tract of the mouse. American Journal of Anatomy, 168, 433–465.

    CAS  Google Scholar 

  • Shearman, L P., Zylka, M. J., Weaver, D. R., Kolakowski, Jr., L. F., & Reppert, S. M. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron, 19, 1261–1269.

    PubMed  CAS  Google Scholar 

  • Shibata, S., Minamoto, Y., Ono, M., & Watanabe, S. (1994). Age-related impairment of food anticipatory locomotor activity in rats. Physiology and Behavior, 55, 875–878.

    PubMed  CAS  Google Scholar 

  • Silverman, H. J., & Zucker, I. (1976). Absence of post-fast food compensation in the golden hamster (Mesocricetus auratus). Physiology and Behavior, 17, 271–285.

    PubMed  CAS  Google Scholar 

  • Spieler, R. E. (1992). Feeding-entrained circadian rhythms in fishes. In M. A. Ali (Ed.), Rhythms in fishes (pp. 137–147). New York: Plenum Press.

    Google Scholar 

  • Stephan, F. K. (1981). Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. Journal of Comparative Physiology, 143, 401–410.

    Google Scholar 

  • Stephan, F. K. (1983a). Circadian rhythm dissociation induced by periodic feeding in rats with suprachiasmatic lesions. Behavioral Brain Research, Z 81–98.

    Google Scholar 

  • Stephan, F. K. (1983b). Circadian rhythms in the rat: Constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiology and Behavior, 30, 451–462.

    CAS  Google Scholar 

  • Stephan, F. K. (1984). Phase shifts of circadian rhythms of activity entrained to food access. Physiology and Behavior, 32, 663–671.

    PubMed  CAS  Google Scholar 

  • Stephan, F. K (1986a). The role of period and phase in interactions between feeding-and lightentrainable circadian rhythms. Physiology and Behavior, 36, 151–158.

    CAS  Google Scholar 

  • Stephan, E K (1986b). Interaction between light-and feeding-entrainable circadian rhythms in the rat. Physiology and Behavior. 38, 127–133.

    CAS  Google Scholar 

  • Stephan, F. K. (1986c). Coupling between feeding-and light-entrainable circadian pacemakers in the rat. Physiology and Behavior, 38, 537–546.

    CAS  Google Scholar 

  • Stephan, F. K (1989a). Forced dissociation of activity entrained to T cycles of food access in rats with suprachiasmatic lesions. Journal of Biological Rhythms, 4, 467–479.

    CAS  Google Scholar 

  • Stephan, F. K (1989b). Entrainment of activity to multiple feeding times in rats with suprachiasmatic lesions. Physiology and Behavior, 46, 489–497.

    CAS  Google Scholar 

  • Stephan, E K (1992a). Resetting of a feeding-entrainable circadian clock in the rat. Physiology and Behavior, 52, 985–995.

    CAS  Google Scholar 

  • Stephan, E K (1992b). Resetting of a circadian clock by food pulses. Physiology and Behavior, 52, 997–1008.

    CAS  Google Scholar 

  • Stephan, F. K (1997). Calories affect zeitgeber properties of the feeding entrained circadian oscillator. Physiology and Behavior, 62, 995–1002.

    PubMed  CAS  Google Scholar 

  • Stephan, E K., & Becker, G. (1989). Entrainment of anticipatory activity to various durations of food access. Physiology Behavior, 46, 731–741.

    PubMed  CAS  Google Scholar 

  • Stephan, F. K, & Davidson, A.J. (1998). Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiology and Behavior, 65, 277–288.

    PubMed  CAS  Google Scholar 

  • Stephan, E K, Swann, J. M., & Sisk, C. L. (1979a). Anticipation of 24 hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behavior Neural Biology, 25, 346–363.

    CAS  Google Scholar 

  • Stephan, E K, Swann, J. M. & Sisk, C. L. (1979b). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behavior and Neural Biology, 25, 545–554.

    CAS  Google Scholar 

  • Stevenson, N. R., Sitren, H. S., & Furuya, S. (1980). Circadian rhythmicity in several small intestinal functions is independent of use of the intestine. American Journal of Physiology, 238, G203–G207.

    PubMed  CAS  Google Scholar 

  • Sulzman, F. M., Fuller, C. A., & Moore-Ede, M. C. (1977). Feeding time synchronizes primate circadian rhythms. Physiology and Behavior, 18, 775–779.

    PubMed  CAS  Google Scholar 

  • Sulzman, E M., Fuller, C. A., Hiles, L. G., & Moore-Ede, M. C. (1978). Circadian rhythm dissociation in an environment with conflicting temporal information. American Journal of Physiology, 235, R175–R180.

    PubMed  CAS  Google Scholar 

  • Weber, D. N., & Spieler, R. E. (1987). Effects of the light-dark cycle and scheduled feeding on behavioral and reproductive rhythms of the cyprinodontfish, medaka, Oryzias latipes. Experientia, 43, 621–624.

    PubMed  CAS  Google Scholar 

  • Wenger, D., Biebach, H., & Krebs, J. R. (1991). Free-running circadian rhythm of a learned feeding pattern in starlings. Naturwissenschaften, 78, 87–89.

    Google Scholar 

  • Yoshihara, T., Honma, S., Mitome, M., & Honma, K (1997). Independence of feeding-associated circadian rhythm from light conditions and meal intervals in SCN lesioned rats. Neuroscience Letters, 222, 95–98.

    PubMed  CAS  Google Scholar 

  • Zielinski, W. J. (1986). Circadian rhythms of small carnivores and the effect of restricted feeding on daily activity. Physiology and Behavior, 38, 613–620.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stephan, F.K. (2001). Food-Entrainable Oscillators in Mammals. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics