Skip to main content

Photic Entrainment in Mammals

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

The rotating earth imposes a rhythm of more or less 24 hours upon environmental conditions. The resulting changes in physical environment are drastic, but predictable. Organisms time their behavior in synchrony with the environmental changes and show clear rhythmic patterns in activity, temperature, food intake, etc. For a long time it was assumed that the daily timing of animal behavior was dictated by the 24-hour light—dark cycle. However, when Johnson (1939) recorded mice that were kept in constant darkness, he noticed that their activity pattern was still rhythmic, but the period of the cycle was now slightly different from 24 hours. He therefore concluded that the origin of circadian rhythms should be sought inside animals, and postulated a “self-winding” physiologic clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., Sc Rusak, B. (1994). Physiological mechanisms regulating photic induction of Fos-like protein in hamster suprachiasmatic nucleus. Neuroscience and Biobehavioral Reviews, 18, 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Abe, H., Rusak, B., & Robertson, H. A. (1991). Photic induction of Fos protein in the suprachiasmatic nucleus is inhibited by the NMDA receptor antagonist MK801. Neuroscience Letters, 127, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Abe, B., Rusak, B., & Robertson, H. A. (1992). NMDA and non-NMDA receptor antagonists inhibit photic induction of Fos protein in the hamster suprachismatic nucleus. Brain Research, 28, 831–835.

    CAS  Google Scholar 

  • Aggelopoulos, N. C. & Meissl, H. (2000). Responses of neurons of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. Journal of Physiology, 523 Pt 1, 211–222.

    Google Scholar 

  • Akasu, T., Shoji, S., & Hasuo, H. (1993). Inward rectifier and low-threshold calcium currents contribute to the spontaneous firing mechanism in neurons of the rat suprachiasmatic nucleus. Pflügen Archiv, 425, 109–116.

    Article  CAS  Google Scholar 

  • Albers, H. E., & Ferris, C. F. (1984). Neuropeptide Y: Role in light—dark cycle entrainment of hamster circadian rhythms. Neuroscience Letters, 50, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Albers, H. E., Liou, S. Y., Stopa, E. G., & Zoeller, R. T. (1991). Interaction of colocalized neuropeptides: Functional significance in the circadian timing system. Journal of Neuroscience, 11(3), 846–851.

    PubMed  CAS  Google Scholar 

  • Albrecht, U., Sun, Z. S., Eichele, G., & Lee, C. C. (1997). A differential response of two putative mammalian circadian regulators, mperl and mper2, to light. Cell, 91, 1055–1064.

    CAS  Google Scholar 

  • Amir, S. (1992). Blocking NMDA receptors or nitric oxide production disrupts light transmission to the suprachiasmatic nucleus. Brain Research., 586, 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., (1992). Pituitary adenylate cyclase activating polypeptide (PACAP): Discovery and current status of research. Regulatory Peptides, 37, 287–303.

    PubMed  CAS  Google Scholar 

  • Azmitia, E. C., & Segal, M. (1978). An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei of the rat. Journal of Comparative Neurology, 179, 641–668.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B., & Levick, W. R. (1969). Changes in the maintained discharge with adaptation level in the cat retina. Journal of Physiology, 202, 699–718.

    PubMed  CAS  Google Scholar 

  • Berson, D. M. (1988). Converence of retinal W-cell and corticotectal input of the cat superior colliculus. Journal of Neurophysiology, 60, 1861–1873.

    PubMed  CAS  Google Scholar 

  • Biello, S. M. (1995). Enhanced photic phase shifting after treatment with antiserum to neuropeptide Y. Brain Research, 673, 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Biello, S. M., Golombek, D., & Harrington, M. E. (1996). Interactions between neuropeptide Y and glutamate in the hypothalamic slice preparation. In Fifth meeting of the Society for Research on Biological Rhythms, 79.

    Google Scholar 

  • Biello, S. M., Golombek, D. A., & Harrington, M. E. (1997). Neuropeptide Y and glutamate block each other’s phase shifts in the suprachiasmatic nucleus in vitro. Neuroscience, 77, 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., Khalsa, S. B. S., McMahon, D. G., Michel, S., & Guesz, M. Biological clocks in the retina: Cellular mechanisms of biological timekeeping. International Review of Cytology, 146, 83–143.

    Google Scholar 

  • Block, M., & Zucker, I. (1976). Circadian rhythms of rat locomotor activity after lesions of the midbrain raphe nuclei. Journal of Comparative Physiology, 109, 235–247.

    Article  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barjer, J. L., & Nicoll, R. A. (1972). Effects of serotonin on central neurons: Microiontophoretic administration. Federation Proceedings, 31, 97–106.

    PubMed  CAS  Google Scholar 

  • Boivin, D. B., Duffy, J. F., Kronauer, R. E., & Czeisler Ch. A. (1996). Dose—response relationships for resetting of human circadian clock by light. Nature, 379, 540–542.

    Article  PubMed  CAS  Google Scholar 

  • Bos, N. P. A., & Mirmiran, M. (1993). Effects of excitatory and inhibitory amino acids on neuronal discharges in the cultured suprachismatic nucleus. Brain Research Bulletin, 31, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Boulos, Z. (1995). Wavelenth dependence of light-induced phase shifts and period changes in hamsters. Physiology and Behavior 57, 1025–1033.

    Article  PubMed  CAS  Google Scholar 

  • Boulos, Z., & Rusak, B. (1982). Circadian phase response curves for dark pulses in the hamster. Journal of Comparative Physiology, 146, 411–417.

    Article  Google Scholar 

  • Boycott, B. B., & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. Journal of Physiology, 240, 397–419.

    PubMed  CAS  Google Scholar 

  • Brainard, G. C., Richardson, B. A., King, T. S., Matthews, S. A., & Reiter, R. J. (1983). The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: A dose—response relationship. Endocrinology, 113, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Brainard, G. C., Richardson, B. A., King, T. S., & Reiter, R. J. (1984). The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Research, 294, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Brainard, G. C., Podolin, P. L., Leivy, S. W., Rollag, M. D., Cole, C., & Barker, F. M. (1986). Near-ultraviolet radiation suppresses pineal melatonin content. Endocrinology, 119, 2201–2205.

    Article  PubMed  CAS  Google Scholar 

  • Byku, M., & Gannon, R. L. (2000). SNC 80, a delta opioid agonist, elicits phase advances in hamsters circadian activity rhythms. NeuroReport, 11, 1449–1452.

    Article  PubMed  CAS  Google Scholar 

  • Byku, M., Legutko, R., & Gannon, R. L. (2000). Distribution of delta opioid receptor immunoreactivity in the hamster suprachiasmatic nucleus and intergeniculate leaflet. Brain Research, 857, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G. M., & Menaker, M. (1987). Kynurenic acid blocks suprachismatic nucleus responses to optic nerve stimulation. Brain Research, 410, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G. H., & Menaker, M. (1989). Effects of excitatory amino acid receptor antagonists and agonists on suprachiasmatic nucleus to retinohypothalamic tract volleys. Brain Research, 479, 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, S. S., & Murphy, P. J. (1998). Extraocular circadian phototransduction in humans. Science, 279, 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., & Moore, R. Y. (1984). The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution. Neuroscience, 13, 425–431.

    Article  Google Scholar 

  • Cardalini, D. P., Larin, F., & Wurtman, R. J. (1972). Control of the rat pineal gland by light spectra. Proceedings of the National Academy of Sciences of the USA, 69, 2003.

    Article  Google Scholar 

  • Cassone, V. M., Speh, J. C., Card, J. P., & Moore, R. Y. (1988). Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. Journal of Biological Rhythms, 3, 71–91.

    Article  PubMed  CAS  Google Scholar 

  • Castell, M., Belenky, M., Cohen, S., Ottersen, O. P., & Storm-Mathisen, I. (1993). Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. European Journal Neuroscience, 5, 368–381.

    Article  Google Scholar 

  • Chambille, I., Doyle, S., & Serviere, J. (1993) Photic induction and circadian expression of Fos-like protein. Immunohistochemical study in the retina and suprachiasmatic nuclei of hamster. Brain Research, 612, 138–150.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C. S., & Menaker, M. (1992). NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. Journal of Biological Rhythms, 7, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C. S., Ralph, M. R. & Menaker, M. (1990). Do NMDA receptors mediate the effects of light on circadian behavior? Brain Research, 523, 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C. S., Foster, R. G., & Menaker, M. (1991). NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Research, 554, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C. S., Foster, R. G., & Menaker, M. (1993). Light-induced phase shifts and Fos expression in the hamster circadian system: The effects of anesthetics. Journal of Biological Rhythms, 8(3), 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, H. M., Herbin, M., & Nevo, E. (1993). Occular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature, 361, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Cui, L.-N., & Dyball, R. E. J. (1996). Synaptic input from the retina to the suprachiasmatic nucleus changes with the light—dark cycle in the Syrian hamster. Journal of Physiology, 492, 483–493.

    Google Scholar 

  • Czeisler, C. A., Kronauer, R. E., Allan, S., Duffy, J. F., Jewett, M. E., Brown, E. N., & Ronda, J. M. (1989). Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science, 244, 1328–1333.

    Article  PubMed  CAS  Google Scholar 

  • Daan, S., & Pittendrigh, C. S. (1976). A functional analysis of circadian pacemaker in nocturnal rodents, II The variability of phase response curves. Journal of Comparative Physiology, 106, 253–266.

    Article  Google Scholar 

  • Daan, S., Pittendrigh, C. S., & Aschoff, J. (2000). The natural entrainment of circadian systems. Journal of Biological Rhythms, 15, 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Dark, J. G., & Asdourian, D. (1975). Entrainment of the rat’s activity by cyclic light following lateral geniculate nucleus lesions. Physiology and Behavior, 15, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Decker, K, & Reuss, S. (1994). Nitric oxide-synthesizing neurons in the hamster suprachiasmatic nucleus: a combined NOS- and NADPH-staining and retinohypothalamic tract tracing study. Brain Research, 666, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey, P. J. (1960). Daily light sensitivity rhythm in a rodent. Science, 131, 33–35.

    Article  CAS  Google Scholar 

  • DeCoursey, P. J. (1986). Light-sampling behavior in photoentrainment of a rodent circadian rhythm. Journal of Comparative Physiology A, 159, 161–169.

    Article  CAS  Google Scholar 

  • DeCoursey, P. J. (1989). Photoentrainment of circadian rhythms: An ecologist’s viewpoint. In T. Hiroshige and K. Honma, (Eds), Circadian clocks and ecology (pp. 187–206). Sapporo: Hokkaido University Press.

    Google Scholar 

  • De Jeu, M. T. G., & Pennartz, C. M. A. (1997) Functional characterization of the H-current in SCN neurons in subjective day and night: A whole-cell patch-clamp study in acutely prepared brain slices. Brain Research, 767, 72–80

    Article  PubMed  Google Scholar 

  • De Vries, M. J., & De Vries, A. A. (1995). Change in the pattern in circadian running-wheel activity after lesions of the intergeniculate leaflet and ventral lateral geniculate nucleus in the Syrian hamster. Biological Rhythm Research, 26, 331–341.

    Article  Google Scholar 

  • De Vries, M. J., Nunes Cardozo, B., van der Want, J., de Wolf, A., & Meijer, J. H. (1993). Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat. Brain Research, 612, 231–237.

    Article  PubMed  Google Scholar 

  • De Vries, M.J., Treep, J. A., de Pauw, E. S. D., & Meijer, J. H. (1994). The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: Involvement of excitatory amino acids. Brain Research, 642, 206–212.

    Article  PubMed  Google Scholar 

  • Ding, J. M., Chen, D., Weber, E. T., Faiman, L. E., Rea, M. A., & Gillette M. U. (1994). Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science, 266, 1713–1717.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J. M., Faiman, L. E., Hurst, W. J., Kuriashkina, L. R., & Gillette M. U. (1997). Resetting the biological clock: Mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. Journal of Neuroscience, 17, 667–675.

    PubMed  CAS  Google Scholar 

  • Drennan, M., Kripke, D. F., & Gillin, J. C. (1989). Bright light can delay human temperature rhythm independent of sleep. American Journal of Physiology. Regulatory, Integrative and Comparative, 11, R136—R141.

    Google Scholar 

  • Duncan, W. C., Johnson, K. A., & Wehr, T. A. (1992). Altered sensitivity of the photic entrainment pathway by selected antidepressant drugs. In Third Meeting of the Society for Research on Biological Rhythms, 3, P. 62.

    Google Scholar 

  • Dunn, J., Dyer, R., & Bennett, M. (1972). Diurnal variation in plasma corticosterone following long term exposure to continuous illumination. Endocrinology, 90, 1660–1663.

    Article  PubMed  CAS  Google Scholar 

  • Earnest, W. C., & Turek, F. W. (1985). Neurochemical basis for the photic control of circadian rhythms and seasonal reproductive cycles. Proceedings of the National Academy of Sciences of the USA, 82, 4277–4281.

    Article  PubMed  CAS  Google Scholar 

  • Ebling, F. J. P. (1996). The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Progress in Neurobiology, 50, 109–132.

    Article  PubMed  CAS  Google Scholar 

  • Ebling, F. J. P., Staley, K, Maywood, E. S., Humby, T., Hancock, D. C., Waters, C. M., Evan, G. I., & Hastings, M. H. (1991). The role of NMDA-type glutamatergic neurotransmission in the photic induction of immediate-early gene expression in the suprachiasmatic nuclei of the Syrian hamster. Journal of Neuroendocrinology, 3, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Ebling, F. J. P., Hui, Y., Mirakhur, A., Maywoord, E. S., & Hastings, M. H. (1993). Photoperiod regulates the LH response to central glutamatergic stimulation in the male Syrian hamster. Journal of Neuroendocrinology, 5, 609–618.

    Article  PubMed  CAS  Google Scholar 

  • Ebling, F. J. P., Mikkelsen, J. D., Grosse, J., Dickerson, J. M., Maywood, E. S., Bittman, E. L., & Hastings, M. H. (1994) Immediate-early gene expression as a marker of neuronal activity in the suprachiasmatic nucleus. In M. Moller & P. Pévet (Eds.), Advances in Pineal Research, (Vol. 8, pp. 77–87). London: Libbey.

    Google Scholar 

  • Edgar, D. M., Miller, J. D., Prossner, R. A., Dean, R. R., & Dement, W. C. (1993). Serotonin and the mammalian circadian system: II. Pase-shifting rat behavioral rhythms with serotonergic agonists. Journal of Biological Rhythms, 8, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J. A., & Tamarkin, L. (1994). Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters. Journal of Comparative Physiology A, 174, 469–484.

    Article  CAS  Google Scholar 

  • Foote, W. E., Taber-Pierce, E., & Edwards, L. (1978). Evidence for a retina projection to the midbrain of the cat. Brain Research, 156, 121–124.

    Article  Google Scholar 

  • Foster, R. G., Provencio, I., Hudson, D., Fiske, S., DeGrip, W., & Menaker, M. (1991). Circadian photo-reception in the retinally degenerate mouse (rd/rd). Journal of Comparative Physiology, 169, 39–50.

    PubMed  CAS  Google Scholar 

  • Francois-Bellan, A. M., Hery, M., Barrit, M. C., Faudon, M., & Fery, E (1987). The stimulation of GABAB receptors increases serotonin release in the rat suprachiasmatic area. Neurochemistry International, 11, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Francois-Bellan, A. M., Hery, M., Faudon, M., & Fery, F. (1988). Evidence for GABA control of serotonin metabolism in the rat suprachiasmatic area. Neurochemistry International,l3, 455–462.

    Article  Google Scholar 

  • Freedman, M. S., Lucas, R. J., Soni, B., von Schantz, M., Munoz, M., David Gray, Z., & Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284, 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Gannon, R. L., & Rea, M. A. (1993). Glutamate receptor immunoreactivity in the rat suprachiasmatic nucleus. Brain Research, 622, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Gannon, R. L., Cato, M. J., Hart, K, Armstrong, D. L., & Rea, M. A.(1995). GABAergic modulation of optic nerve-evoked field potentials in the rat suprachiasmatic nucleus. Brain Research, 694, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, C. F., Mintz, E. M., Marvel, C. L., Huhman, K. L., Sc Albers, H. E. (1997). GABA, and GABAB agonists and antagonists alter the phase-shifting effects of light when microinjected into the suprachiasmatic region. Brain Research, 759, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Gillette, M. U. (1997). Cellular and biochemical mechanisms underlying circadian rhythms in vertebrates. Current Opinion in Neurobiology., 7, 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Gillette, M. U., Demarco, S.J., Ding, J. M., Gallman, E. A., Faiman, L. E., Liu, C., McArthur, A.J., Medianic, M., Richard, D., Tcheng, T. K, & Weber, E. T. (1993). The organization of the suprachiasmatic circadian pacemaker of the rat and its regulation by neurotransmitters and modulators. Journal of Biological Rhythms, 8, 53–58.

    Google Scholar 

  • Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K E., Takahashi, J. S., Sc Greenberg, M. E. (1993). Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science, 260, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Glass, J. D., Selim, M., & Rea, M. A. (1994). Modulation of light-induced c-Fos expression in the suprachiasmatic nuclei by 5-HT-1A receptor agonists. Brain Research, 638, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D. A., Biello, S. M., Rendon, R. A., & Harrington, M. E. (1996). Neuropeptide Y phase shifts the circadian clock in vitro via a Y2 receptor. NeuroReport, 7, 1315–1319.

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff, V. K, Pieschl, R. L., Wisialowski, T. A., van den Pol, A. N., &Yocca, F. D. (1998). Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: Mediation by different receptor subtypes. Journal of Neuroscience, 18, 3014–3022.

    PubMed  CAS  Google Scholar 

  • Groos, G. A., & Mason, R. (1980). The visual properties of rat and cat suprachiasmatic neurons. Journal of Comparative Physiology, 135, 349–356.

    Article  Google Scholar 

  • Groos, G. A., & Meijer, J. H. (1985). Effects of illumination on suprachiasmatic nucleus electrical discharge. Annals of the New York Academy of Sciences, 453, 134–146.

    Article  PubMed  CAS  Google Scholar 

  • Groos, G. A., & Rusak, B. (1982). Neurophysiological studies of the ventral lateral geniculatesuprachiasmatic nucleus projection in the rat. Society for Neuroscience Abstracts, 8, 543.

    Google Scholar 

  • Groos, G. A., Mason, R., & Meijer, J. H. (1983). Electrical and pharmacological properties of the suprachiasmatic nuclei. Federation Proceedings, 42, 2790–2795.

    PubMed  CAS  Google Scholar 

  • Güldner, E H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. II. Structural variability as revealed by morphometric examination. Cell Tissue Research 194, 37–54.

    Article  PubMed  Google Scholar 

  • Güldner, F. H., & Phillips, J. C. (1985). Structural plasticity of developing optic synapses under different lighting conditions. Neuroscience Letters, 55, 225–228.

    Article  PubMed  Google Scholar 

  • Guy, J., Bosler, O., Dusticier, G., Pelletier, G., & Galas, A. (1987). Morphological correlates of serotoninneuropeptide Y interactions in the rat suprachiasmatic nucleus: Combined radioautographic and immunocytochemical data. Cell Tissue Research, 250, 657–662.

    PubMed  CAS  Google Scholar 

  • Hale, P. T., & Sefton, A. J. (1978). A comparison of the visual and electrical response properties of cells in the dorsal and ventral lateral geniculate nuclei. Brain Research 153, 591–595.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. C., Earle-Cruikshanks, C., & Harrington, M. E. (1999). Role of membrane conductances and protein synthesis in subjective day phase advances of the hamster circadian clock by neuropeptide. Y. European Journal of Neuroscience, 11, 3424–3432.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J., Ding, J. M., Chen, D., Fahrenkrug, J., Larsen, P. J., Gillette, M. U., Mikkelsen, J. D. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: A potential daytime regulator of the biological clock. Journal of Neuroscience, 17, 2637–2644.

    PubMed  CAS  Google Scholar 

  • Harrington, M. E. (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: Interrelated structures in the visual and circadian systems. Neuroscience and Biobehavioral Reviews, 21, 705–727.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. E., & Hoque, S. (1997). NPY opposes PACAP phase shifts via receptors different from those involved in NPY phase shifts. NeuroReport, 8, 2677–2680.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. E., & Rusak, B. (1986). Lesions of the geniculo-hypothalamic tract alters circadian activity rhythms. Journal of Biological Rhythms, 1, 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. E., & Rusak, B. (1989). Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster. Visual Neuroscience, 2, 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. E., Nance, D. M., & Rusak, B. (1985). Neuropeptide Y immunoreactivity in the hamster circadian rhythms. Brain Research Bulletin, 15, 465–472.

    Article  PubMed  Google Scholar 

  • Harrington, M. E., Nance, D. M., & Rusak, B. (1987). Double-labeling ofneuropeptideY-immunoreactive neurons which project from the geniculate to the suprachiasmatic nuclei. Brain Research, 410, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Heym, J., Trulson, M. E., & Jacobs, B. L. (1982). Raphe unit activity in freely moving cats: Effects of phasic auditory and visual stimuli. Brain Research, 232, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L., & Spear, P. D. (1976). Retinogeniculate projections in hooded and albino rats: An auto-radiographic study. Experimental Brain Research, 24, 523–529.

    Article  CAS  Google Scholar 

  • Hoffmann, K. (1969). Circadiane Periodik bei Tupaias (Tupaia glis) in konstanten Bedingungen. ZoologischerAnzeiger, 33 (Supplement), 171–177.

    Google Scholar 

  • Hoffmann, K. (1971). Splitting the circadian rhythm as a function of light intensity. In M. Memaker (ed.), Biochronometry (pp. 143–150). Washington DC: National Academy of Sciences.

    Google Scholar 

  • Honma, K. I., Watanabe, K., & Heroshige, T. (1979). Effects of parachlorophenylalanine and 5,6 dihydroxytryptamine on the freerunning rhythms of locomotor activity and plasma corticosterone. Brain Research, 169, 531–544.

    Article  PubMed  CAS  Google Scholar 

  • Honma, K I., Honma, S., & Hiroshige, T. (1985). Response curve, free-running period, and activity time in circadian locomotor rhythm of rats. Japanese Journal of Physiology, 35, 643–658.

    Article  PubMed  CAS  Google Scholar 

  • Horst van der, G. T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., de Wit, J., Verkerk, A., Eker, A. P., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J. H., & Yasui, A. (1999). Mammalian Cryl and Cry2 are essential for maintenance of circadian rhythms. Nature, 398, 627–630.

    Article  PubMed  Google Scholar 

  • Huettner, J. E. (1990). Glutamate receptor channels in rat DRG neurons: Activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron, 5, 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Hut, R. A., Van Oort B. E. H., & Daan, S. (1999). Natural entrainment without dawn and dusk: The case of the European ground squirrel. Journal of Biological Rhythms, 14, 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. T. (1984). Light responsiveness of the suprachiasmatic nucleus with the island with the retinohypothalamic tract spared. Brain Research, 294, 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. I., & Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the USA, 76, 5962–5966.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. I., & Kawamura, H. (1982). Characteristics of a circadian pacemaker in the suprachiasmatic nucleus. Journal of Comparative Physiology, 146, 153–160.

    Article  Google Scholar 

  • Ishida, N., Matsui, M., Mitsui, Y., & Mishina, M. (1994). Circadian expression of NMDA receptor mRNAs, E3 and zeta 1 in the suprachiasmatic nucleus of rat brain. Neuroscience Letters, 166, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Ito, N., Yamatodani, A., Nagai, K., & Wada, H. (1991). Dual effect of glycine on isolated rat suprachias-matic neurons. American Journal of Physiology 260, 213–218.

    Google Scholar 

  • Jacobs, G. H. (1993). The distribution and nature of color vision among the mammals. Biological Review, 68, 413–471.

    Article  CAS  Google Scholar 

  • Jacobs, G. H., Neitz, J., & Deegan, J. F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature, 353, 655–656.

    Article  PubMed  CAS  Google Scholar 

  • Jeu, M. de, Hermes, M., & Pennartz, C. (1998). Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. NeuroReport, 9, 3725–3729.

    Article  PubMed  Google Scholar 

  • Jewett, M. E., Rimmer, D. W., Duffy, J. F., Merman, E. B., Kronauer, R. E., & Czeisler, A. (1997). Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. American Journal of Physiology, 273, R1800–R1809.

    PubMed  CAS  Google Scholar 

  • Jiang, Z. G., & Allen R. A. (1995). Presynaptic inhibition by baclofen of retinohypothalamic excitatory synpatic transmission in rat suprachiasmatic nucleus. Neuroscience, 64, 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Z. G., Yang, Y., Liu, Z., & Allen, C. N. (1997). Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. Journal of Physiology, 499, 141–159.

    PubMed  CAS  Google Scholar 

  • Jiao, Y., Lee, T. M., & Rusak, B. (1999). Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Brain Research, 817 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. S. (1939). Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). Journal of Experimental Zoology, 82, 315–328.

    Article  Google Scholar 

  • Johnson, E J., Morin, L. P., & Moore, R. Y. (1988a). Retinohypothalamic projections in the hamster and rat using a cholera bungarotoxin. Brain Research, 462, 301–312.

    Article  CAS  Google Scholar 

  • Johnson, R. F., Moore, R. Y., & Morin, L. P. (1988b). Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Research, 460, 297–313.

    Article  CAS  Google Scholar 

  • Kam, L. M., & Moberg, G. P. (1977). Effects of raphe lesions on the circadian pattern of wheelrunning in the rat. Physiology and Behavior, 18, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. I., & Dudek, F. E. (1991). Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: Excitatory synaptic mechanisms. Journal of Physiology, 444, 269–287.

    PubMed  CAS  Google Scholar 

  • Kim, Y. I., & Dudek, E E. (1993). Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input. Journal of Physiology, 464, 229–243.

    PubMed  CAS  Google Scholar 

  • Klein, D. C., & Weller, J. L. (1970). Indole metabolism in the pineal gland: A circadian rhythm in N-acetyltransferase. Science, 169, 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, M., Kalkowski, A., & Wollnik, E (2000). Species differences between hamsters and rats with regard to the putative role of serotonin in the circadian system. Biological Rhythm Research, 31(3), 340–354.

    Article  CAS  Google Scholar 

  • Kornhauser, J. M., Nelson, D. E., Mayo, K. E., & Takahashi, J. S. (1990). Photic and circadian regulation of c fos gene expression in the hamster suprachiasmatic nucleus. Neuron, 5, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser, J. M., Mayo, K. E., & Takahashi, J. S. (1993). Immediate-early gene expression in a mammalian circadin pacemaker, the suprachiasmatic nucleus. In M. W. Young (Ed.), Molecular genetics of biological rhythms, cellular clock series (Vol. 4, pp. 271–307). New York: Dekker.

    Google Scholar 

  • Lee, T. M., & Labyak, S. E. (1997). Free-running rhythms and light-and dark-pulse phase response curves for diurnal Octodon degas (rodentia). American Journal of Physiology, 273, R278–R286.

    PubMed  CAS  Google Scholar 

  • Lees, J. G., Hallonquist, J. D., & Mrosovsky, N. (1983). Differential effects of dark pulses on the two components of split circadian activity rhythms in golden hamsters. Journal of Comparative Physiology, 153, 123–132.

    Article  Google Scholar 

  • Levine, J. D., Rosenwasser, A. M., Yanovski, J. A., & Adler, N. T. (1986). Circadian activity rhythms in rats with midbrain raphe lesions. Brain Research, 384, 240–249.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. D., Weiss, M. L., Rosenwasser, A. M., & Miselis, R. R. (1991). Retinohypothalamic tract in the female albino rat: A study using horseradish peroxydase conjugated to cholera toxin. Journal of Comparative Neurology, 306, 344–360.

    Article  PubMed  CAS  Google Scholar 

  • Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., & Markey, S. P. (1980). Light suppresses melatonin secretion in humans. Science, 210, 1267–1269.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, D. W., Church, J., & Mason, C. A. (1975). Electrophysiological activation of suprachiasmatic neurones by changes in retinal illumination. Acta Endocrinologica Supplementum, 199, 184.

    Google Scholar 

  • Liou, S. Y., & Albers, H. E. (1991). Single unit response of neurons within the hamster suprachiasmatic nucleus to neuropeptide Y in the hypothalamic slice preparation. Brain Research Bulletin., 27, 825–828.

    Article  PubMed  CAS  Google Scholar 

  • Liou, S. Y., Shibata, S., & Ueki, S. (1986a). Effects of monoamines on field potentials in the suprachiasmatie nucleus of slices of hypothalamus of the rat evoked by stimulation of the optic nerve. Neuropharmacology, 15, 1009–1014.

    Article  Google Scholar 

  • Liou, S. Y., Shibata, S., & Ueki, S. (1986b). Optic nerve stimulation-induced increase of release of 3H-glutamate and 3H-asparate but not 3H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Research Bulletin, 16, 527–531.

    Article  CAS  Google Scholar 

  • Liou, S. Y., Minamoto, Y., Shibata, S., Shiratsuchi, A., Miyamoto, K., & Ueki, S. (1986c). The effects of raphe lesions on the neuronal activity of the suprachiasmatic nucleus in rat hypothalamic slice preparation. Japanese Journal of Pharmacology, 40, 188P.

    Article  Google Scholar 

  • Liou, S. Y., Shibata, S., Albers, H. E., & Ueki, S. (1990). Effects of GABA and anxiolytics on the single unit discharge of suprachiasmatic neurons in the rat hypothalamic slices. Brain Research Bulletin, 25, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg, T. W., Baron, B. M., De Lecea, L., Miller, J. D., Prosser, R. A., Rea, M. A., Foye, P. E., Racke, M., Slone, A. L., Siegel, B. W., Danielson, P. E., Sutcliffe, J. G., & Erlander, M. G. (1993). A novel adenylate cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron, 11, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Marchant, E. G., & Mistlberger, R. E. (1995). Morphine phase-shifts circadian rhythms in mice: Role of behavioural activation. NeuroReport, 7, 209–212.

    PubMed  CAS  Google Scholar 

  • Mason, C. A., Sparrow, N., & Lincoln, D. W. (1977). Structural features of the retinohypothalamic projection in the rat during normal development. Brain Research, 132 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. (1986). Circadian variation in sensitivity of suprachiasmatic and lateral geniculate neurons to 5-hydroxytriptamine in the rat. Journal of Physiology, 377, 1–13.

    PubMed  CAS  Google Scholar 

  • Mason, R., & Rusak, B. (1991). NMDA-evoked responses in the Syrian hamster suprachiasmatic nucleus in vitro. Journal of Physiology, 435, 39.

    Google Scholar 

  • Mason, R., Biello, S. M., & Harrington, M. E. (1991). The effects of GABA and benzodiazepines on neurons in the suprachiasmatic nucleus (SCN) of Syrian hamsters. Brain Research, 525, 53–57.

    Article  Google Scholar 

  • Mason, R., Piggins, H., & Rusak, B. (1993). The effect of the putative retinohypothalamic neurotransmitter NAAG (N-acetylaspartylglutamate) on rat and hamster suprachiasmatic neurons in vitro. Journal of Physiology, 459, 482.

    Google Scholar 

  • Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mgt+ of NMDA responses in spinal cord neurones. Nature, 309, 261–263.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, C. E., & Sontag, C. R. (1980). Entrainment by red light of running activity and ovulation rhythms of rats. American Journal of Physiology, 239, R450–R454.

    PubMed  CAS  Google Scholar 

  • Medanic, M., & Gillette, M. U. (1992). Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day. Journal of Physiology, 450, 629–642.

    PubMed  CAS  Google Scholar 

  • Medanic, M., & Gillette, M. U. (1993). Suprachiasmatic circadian pacemaker of rat shows two windows of sensitivity to neuropeptide Y in vitro. Brain Research, 620, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Meeker, R. B., Greenwood, R. S., & Hayward, J. N. (1994). Glutamate receptors in the rat hypothalamus and pituitary. Endocrinology, 134, 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H. (1991). Integration of visual information by the suprachiasmatic nucleus. In D. C. Klein, R. Y. Moore & S. M. Reppert (Eds.), The suprachiasmatic nucleus: The mind’s clock (pp. 107–119). New York: Oxford University Press.

    Google Scholar 

  • Meijer, J. H., & Groos, G. A. (1988). Responsiveness of suprachiasmatic and ventral lateral geniculate neurons to serotonin and imipramine: A micro-iontophoretic study in normal and imipraminetreated rats. Brain Research Bulletin, 20, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., & Rietveld, W. J. (1989). Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiological Review, 69, 671–707.

    CAS  Google Scholar 

  • Meijer, J. H., & De Vries, M. J. (1995). Light induced phase shifts in onset and offset of running-wheel activity in the Syrian hamster. Journal of Biological Rhythms, 10, 4–16.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Groos, G. A., & Rusak, B. (1986). Luminance coding in a circadian pacemaker: The suprachiasmatic nucleus of the rat and the hamster. Brain Research, 382, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., van der Zee, E.A., & Dietz, M. (1988a). The effects of intraventricular carbachol injections on the free-running activity rhythm of the hamster. Journal of Biological Rhythms, 3, 333–348.

    Article  CAS  Google Scholar 

  • Meijer, J. H., van der Zee, E. A., & Dietz, M. (1988b). Glutamate phase shifts circadian activity rhythms in hamsters. Neuroscience Letters, 86, 177–183.

    Article  CAS  Google Scholar 

  • Meijer, J. H., Rusak, B., & Harrington, M. E. (1989). Photically responsive neurons in the hypothalamus of a diurnal ground squirrel. Brain Research, 501, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Daan, S., Overkamp, G.J. F., & Hermann, P. M. (1990). The two-oscillator circadian system of tree shrews (Tupaia belangen) and its response to light and dark pulses. Journal of Biological Rhythms, 5, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Ruis, A., Albus, H., & Dahan, A. (1999). Functional absence of extraocular photoreception in rodents. Brain Research, 831, 337–339.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H. Ruijs, A. C. J., Albus, H., van der Geest, B., Duindam, H., Zwinderman, A. H., & Dahan, A. (2000). Fentanyl, a mu-opioid receptor agonist, phase shifts the hamster circadian pacemaker. Brain Research, 868, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Rusak, B., & Gánshirt, G. (1992). The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Research, 598, 257–288.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Albus, H., Weidema, E, & Ravesloot, J. H. (1993). The effects of glutamate on membrane potential and discharge rate of suprachiasmatic neurons. Brain Research, 603, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Watanabe, K., Détári, L., & Schaap, J. (1996). Circadian rhythm in light response in suprachiasmatic nucleus neurons of freely moving rats. Brain Research, 741, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Schaap, J., Watanabe, K., & Albus, H. (1997). Multiunit activity recordings in the supra-chiasmatic nuclei: In vivo versus in vitro models. Brain Research, 753, 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, J. H., Watanabe, K, Schaap, J., Albus, H., & Détári, L. (1998). Light responsiveness of the suprachiasmatic nucleus: Long-term multiunit and single-unit recordings in freely moving rats. Journal of Neuroscience, 18, 9078–9087.

    PubMed  CAS  Google Scholar 

  • Melo, L., Golombek, D. A., Ralph, M. R. (1997). Regulation of circadian photic responses by nitric oxide. Journal of Biological Rhythms, 12, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Menaker, M. (1982). The search for principles of physiological organization in verbrate circadian systems. In J. Aschoff, S. Daan, & G. A. Groos (Eds.), Vertebrate circadian systems (pp. 1–12). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Michel, S., Geusz, M. E., Zaritsky, J. J., & block. G. D. (1993). Circadian rhythm in membrane conductance expressed in isolated neurons. Science, 259, 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Mick, G., Yoshimura, R., Ohno, K, Kiyama, H., & Tohyama, M. (1995). The messenger RNAs encoding metabotropic glutamate receptor subtypes are expressed in different neuronal subpopulations of the rat suprachiasmatic nucleus. Neuroscience, 66, 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., & Larsen, P. J. (1993). Sustance P in the suprachiasmatic nucleus of the rat: An immunihistochemical and in situ hybridization study. Histochemistry, 100, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., & Vrang, N. (1994). A direct pretectosuprachiasmatic projection in the rat. Neuroscience, 62, 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., Larsen, P. J., & Ebling, F. J. P. (1993). Distribution of N-methyl D-aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Research, 632, 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Millar, A. J. (2000). Clock proteins: Turned over after hours? Current Biology, 10, R529-R531.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. D., Murakami, D. M., & Fuller, C. A.J. (1987). The response of suprachiasmatic neurons of the rat hypothalamus to photic and nicotinic stimuli. Neuroscience, 7, 978–986.

    PubMed  CAS  Google Scholar 

  • Minneman, K. P., Lynuh, H. J., & Wurtman, R. J. (1974). Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin-N-acetyl-transferase. Life Science, 15, 1791–1796.

    Article  CAS  Google Scholar 

  • Minors, D. S., Waterhouse, J. M., & WirzJustice, A. (1991). A human phase-response curve to light. Neuroscience Letters, 133, 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, E. M., Sc Albers, H. E. (1997). Microinjection of NMDA into the SCN region mimics the phase shifting effect of light hamsters. Brain Research, 758, 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, Y., & Sancar, A. (1998). Vitamin B2-based blue light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proceedings of the National Academy of Sciences of the USA, 95, 6097–6102.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, J. R., Williamson, L., Palkovits, M., & Namboodiri, M. A. A. (1990). N-Acetylaspartylglutamate: A transmitter candidate for the retinohypothalamic tract. Proceedings of the National Academy of Sciences of the USA, 87, 8065–8069.

    Article  PubMed  CAS  Google Scholar 

  • Moga, M. M., & Moore, R. Y. (1996). Putative excitatory amino acid projections to the rat suprachiasmatic nucleus in the rat. Brain Research 743, 171–177

    Article  PubMed  CAS  Google Scholar 

  • Moga, M. M., & Moore, R. Y. (1997). Organization of neural inputs to the suprachiasmatic nucleus in the rat. Journal of Comparative Neurology, 389, 508–534.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. (1973). Retinohypothalamic projection in mammals: A comparative study. Brain Research, 49, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Klein, D. C. (1974). Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyl transferase activity. Brain Research, 71, 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Lenn, N. J. (1972). A retinohypothlamic tract in the rat. Journal of Comparative Neurology, 146, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Speh, J. (1993). GABA is the principal neurotransmitter of the circadian system. Neuroscience Letters, 150, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Halaris, A. E., & Jones, B. A. (1978). Serotonin neurons of the midbrain raphe: Ascending projections. Journal of Comparative Neurology, 180, 417–438.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Speh, J. C., & Card, J. P. (1995). The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. Journal of Comparative Neurology, 352, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P. (1994). The circadian visual system. Brain Research Reviews, 67, 102–127.

    Article  Google Scholar 

  • Morin, L. P., & Blanchard, J. (1991). Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brian Research, 566, 173–185.

    Article  CAS  Google Scholar 

  • Morin, L. P., Blanchard, J., & Moore, R. Y. (1992). Intergeniculate leaflet and suprachiasmatic nucleus organisation and connections in the golden hamster. Visual Neuroscience, 8, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Mosko, S. S., & Jacobs, B. L. (1974). Midbrain raphe neurons: Spontaneous activity and response to light. Physiology Behavior, 13, 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. E., & Takahashi, J. S. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). Journal of Physiology, 439, 115–145.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Malenka, R. C., & Kauer, J. A. (1990). Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiological Review, 70, 513.

    CAS  Google Scholar 

  • Nishino, H., & Koizumi, K. (1977). Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters. Brain Research, 120, 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Nishino, H., Koizumi, K, & Brooks, C. M. (1976). The role of the suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythm. Brain Research, 112, 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Pennartz, C. M. A., De Jeu, M. T. G., Geurtsen, A. M. S., Sluiter, A. A., & Hermes, M. L. H. J. (1998). Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. Journal of Physiology, 506, 775–793.

    Article  PubMed  CAS  Google Scholar 

  • Pennartz, C. M. A., Bierlaagh, M. A., & Geurtsen, A. M. S. (1997). Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: Involvement of a slowly inactivating component of sodium current. Journal of Neurophysiology, 78, 1811–1825.

    PubMed  CAS  Google Scholar 

  • Perry, V. H. (1979). The ganglion cell layer of the retina of the rat: A Golgi study. Proceedings of the Royal Society B, 204, 363–375.

    Article  CAS  Google Scholar 

  • Pickard, G. A. (1982). The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic tract. Journal of Comparative Neurology, 1982, 65–83.

    Article  Google Scholar 

  • Pickard, G. E. (1985). Bifurcating axons of retinal ganglion cells terminate in the hypothalamic supra-chiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neuroscience Letters, 55, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G. E., Ralph, M. R., & Menaker, M. (1987). The intergeniculate leaflet partially mediates effects of light on circadian rhythms. Journal of Biological Rhythms, 2, 35–56.

    Article  PubMed  CAS  Google Scholar 

  • Piggins, H. D., & Rusak, B. (1997). Effects of microinjections of substance P into the suprachiasmatic nucleus region on hamster wheel-running rhythms. Brain Research Bulletin, 42, 451–455.

    Article  PubMed  CAS  Google Scholar 

  • Piggins, H. D., Stamp, J. A., Burns, J., Rusak, B., & Semba, K. (1996). Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. Journal of Comparative Neurology, 376, 278–294.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology, 25, 159–184.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976a). Afunctional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 106, 291–331.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 106, 333–355.

    Article  Google Scholar 

  • Podolin, P. L., Rollag, M. D., & Brainard, G. C. (1987). The suppression of nocturnal pineal melatonin in the syrian hamster: Dose-response curves at 500 and 360 nm. Endocrinology, 121, 266–270.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. (1972). Die Aktivitátsperiodik von zwei tagakiven nagern-Funambulus palmarum and Eutamias sibiricus unter dauerlicht Bedingungen. Journal of Comparative Physiology, 78, 60–74.

    Article  Google Scholar 

  • Pohl, H. (1982). Characteristics and variability in entrainment of circadian rhythms to light in diurnal rodents. In A. Aschoff, S. Daan, & G. A. Groos (Eds.), Vertebate circadian systems (pp. 339–346). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Prosser, R. A. (2000). Serotonergic actions and interactions on the SCN circadian pacemaker: In vitro investigations. Biological Rhythm Research, 31(3), 315–339.

    Article  CAS  Google Scholar 

  • Prosser, R. A., Miller, J. D., & Heller, H. C. (1990). A serotonergic agonist phase-shifts the circadian clock in the suprachiasmatic nuclei in vitro. Brain Research, 534, 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, R. A., Heller, H. C., & Miller, J. D. (1992). Serotonergic phase shifts of the mammalian circadian clock: Effects of tetrodotoxin and high Mg+. Brain Research, 573, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, R. A., Dean, R. R., Edgar, D. M., Heller, H. C., & Miller, J. D. (1993). Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. Journal of Biological Rhythms, 8, 1–16.

    CAS  Google Scholar 

  • Pu, M. (1999). Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus. Journal of Comparative Neuroology, 414, 267–274.

    Article  CAS  Google Scholar 

  • Pu, M. (2000). Physiological response properties of cat retinal ganglion cells projecting to suprachiasmatie nucleus. Journal of Biological Rhythms, 15, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, M. R., & Menaker, M. (1985). Bicuculline blocks circadian phase delays but not advances. Brain Research, 325, 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, M. R., & Menaker, M. (1986). Effects of diazepam on circadian phase advances and delays. Brain Research, 372, 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, M. R., & Menaker, M. (1988). A mutation of the circadian system in golden hamsters. Science, 247, 1225–1227.

    Article  Google Scholar 

  • Ralph, M., & Menaker, M. (1989) GAGA regulation of circadian responses to light I. Involvement of GABAq benzodiazepine and GABAB receptors. Journal of Neuroscience, 9, 2858–2865.

    PubMed  CAS  Google Scholar 

  • Rea, M. A., Buckley, B., & Lutton, L. M. (1993a). Local administration of EAA antogonists blocks light-induced phase shifts and c-fos expression in hamster SCN. American journal of Physiology, 265, R1191-R1198.

    CAS  Google Scholar 

  • Rea, M. A., Michel, A. M. & Lutton, L. M. (1993b). Is fos expression necessary and sufficient to mediate light-induced phase advances of the suprachiasmatic circadian oscillator? journal of Biological Rhythms, 8, S59-S64.

    Google Scholar 

  • Rea, M. A., Glass, J. D., & Colwell, C. S. (1994). Serotonin modulates photic responses in the hamster suprachiasmatic nuclei. journal of Neuroscience, 14, 3635–3642.

    PubMed  CAS  Google Scholar 

  • Rea, M. A., Barrera, J., Glass, J. D., & Gannon, R. L. (1995). Serotonergic potentiation of photic phase shifts of the circadian activity rhythm. NeuroReport, 6, 1289–1292.

    Article  Google Scholar 

  • Rea, M. A., & Pickard, G. E. (2000). Serotonergic modulation of photic entrainment in the Syrian hamster. Biological Rhythm Research, 31(3), 284–314.

    Article  CAS  Google Scholar 

  • Reiter, R. J. (1980). The pineal and its hormones in the control of reproduction in mammals. Endocrine Reviews, 2, 109–131.

    Article  Google Scholar 

  • Reiter, R. J. (1985) Action spectra, dose response relationships and temporal aspects of light’s effects on the pineal gland. Annals of the New York Academy of Sciences, 453, 215–230.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R. J., Steinlecher, B. A., Richardson, B. A., & King, T. S. (1983). Differential response to pineal melatonin levels to light at night in laboratory raised and wild-captured 13-lined ground squirrels Spermophilus tridecemlineatus. Life Science, 32, 2625–2629.

    Article  CAS  Google Scholar 

  • Remé, C. E., Wirz-Justice, A., Sc Terman, M. (1991). The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? journal of Biological Rhythms, 6, 1–29.

    Article  Google Scholar 

  • Ribak, C. E., & Peters, A. (1975). An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Research, 92, 341–368.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, M. H., & Stone, J. (1977). Naming of neurons. Classification and naming of cat retinal ganglion cells. Brain, Behavior and Evolution, 14, 185–216.

    Article  CAS  Google Scholar 

  • Rusak, B. (1977). The role of the suprachiasmatic nuclei in the generation of the circadian rhythms in the golden hamster Mesocricetus auratus. Journal of Comparative Physiology, 118, 145–164.

    Article  Google Scholar 

  • Rusak, B., & Zucker, I. (1979). Neural regulation of circadian rhythms. Physiological Review, 59, 449–526.

    CAS  Google Scholar 

  • Rusak, B., Meijer, J. H., & Harrington, M. E. (1989). Hamster circadian rhythms are phaseshifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Research, 493, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Rusak, B., Robertson, H. A., Wisden, W., & Hunt, S. P. (1990). Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science, 248, 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  • Sadun, A., Schaechter, J. D., & Smith, L. E. H. (1984). A retinohypothalamic pathway in man: Light mediation of circadian rhythms. Brain Research, 302, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Sawaki, Y. (1977). Retinohypothalamic projection: Electrophysiological evidence for the existence in female rats. Brain Research, 120, 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Sawaki, Y. (1979). Suprachiasmatic nucleus neurones, excitation and inhibition mediated by the direct re tino hypothalamic projection in female rats. Experimental Brain Research, 37, 127–138.

    Article  CAS  Google Scholar 

  • Schaap, J., Bos, N. P. A., de Jeu, M. T. G., Geurtsen, A. M. S., Meijer, J. H. & Pennartz, C. M. A., (1998). Neurons of the rat suprachiasmatic nucleus show a cercadian rhythm in membrane properties that is lost during prologed whole-cell recording. Brain Research, 19018, 154–166.

    Google Scholar 

  • Schmahl, C., & Bohmer, G. (1997). Effects of excitatory amino acids and neuropeptide Y on the discharge activity of suprachiasmatic neurons in rat brain slices. Brain Research, 746, 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi, M., Wada, K, & Wenthold, R. J. (1992). N-acetylaspartylglutamate acts as an agonist upon homomeric NMDA receptor (NMDARI) expressed in Xenopus oocytes. FEES Letters, 311, 285–289.

    Article  CAS  Google Scholar 

  • Selim, M., Glass, J. D., Hauser, U. E., & Rea, M. A. (1993). Serotonergic inhibition of light-induced fos protein expression and extracellular glutamate in the suprachiasmatic nucleus. Brain Research, 621, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr., & Reppert, S. M. (1997). Two period homologs: Circadian expression and photic regulation in the supraschiasmatic nuclei. Neuron, 19, 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Shen, H., & Semba, K. (1994). A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Research, 635, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., & Moore, R. Y. (1988). Neuropeptide Y and vasopressin effects on rat suprachiasmatic nucleus neurons in vitro. Brain Research, 3, 265–276.

    Google Scholar 

  • Shibata, S., & Moore, R. Y. (1993). Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Research, 615, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Liou, S. Y., & Ueki, S. (1983). Different effects of amino acids, acetylcholine and monoamines on neuronal activity of suprachiasmatic nucleus in rat pups and adults. Neuroscience Letters, 39, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Oomura, Y., Hattori, K., Sc Kita, H. (1984). Responses of suprachiasmatic nucleus to optic nerve stimulation in rat hypothalamic slice preparation. Brain Research, 302, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Liou, S. Y., & Ueki, S. (1986). Influence of excitatory amino acid receptor antagonists and of baclofen on synaptic transmission in the optic nerve to the suprachiasmatic nucleus in slices of rat hypothalamus. Neuropharmacology, 25, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Tsuneyoshi, A., Hamada, T., Tominaga, K., & Watanabe, S. (1992a). Effect of substance P on circadian rhythms of firing activity and the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus. Brain Research, 597, 257–263.

    Article  CAS  Google Scholar 

  • Shibata, S., Tsuneyoshi, A., Hamada, T., Tominaga, K., & Watanabe, S. (1992b). Phase resetting effect of 8-OH-DPAT, a serotonin la receptor antagonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nucleus in vitro. Brain Research, 582, 353–356.

    Article  CAS  Google Scholar 

  • Shibuya, C. A., Melnyk, R. B., & Mrosovsky, N. (1980). Simultaneous splitting of drinking and locomotor activity in a golden hamster. Naturwissenschaften, 67, 45–47.

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa, T., & Moore, R. Y. (1994a). Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neuroscience Letters, 178, 47–50.

    Article  CAS  Google Scholar 

  • Shirakawa, T., & Moore, R. Y. (1994b). Responses of rat suprachiasmatic nucleus neurons to substance P and glutamate in vitro. Brain Research, 642, 213–220.

    Article  CAS  Google Scholar 

  • Smith, R. D., Turek, F. W., & Slater, N. T. (1990). Bicuculline and picrotoxin block phase advances induced by GABA agonists in the circadian rhythm of locomotor activity in the golden hamster by a phaclofen-intensive mechanism. Brain Research, 530, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Spear, P. D., Smith, D. C., & Williams, L. L. (1977) Visual receptive-field properties of single neuron in cat’s ventral lateral geniculate nucleus. Journal of Neurophysiology, 40, 390–409.

    PubMed  CAS  Google Scholar 

  • Speh, I. C., & Moore, R. Y. (1993). Retinohypothalamic tract development in hamsters and rat. Developmental Brain Research, 76, 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P., Edwards, E. A., & Sakmann, B. (1992).Journal of Physiology, 449, 247–278.

    PubMed  CAS  Google Scholar 

  • Stone, J., & Fukuna, Y. (1974). Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neurophysiology, 37, 722–748.

    PubMed  CAS  Google Scholar 

  • Sun, Z. S., et al. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell, 90, 1003–1011.

    Article  PubMed  CAS  Google Scholar 

  • Swade, R. H., & Pittendrigh, C. S. (1967). Circadian locomotor rhythms of rodents in the Arctic. American Naturalist, 101, 431–466.

    Article  Google Scholar 

  • Swann, J., & Turek, E W. (1982). Cycle of lordosis behavior in female hamsters whose circadian activity rhythm has split into two components. American Journal of Physiology, 423, R112-R118.

    Google Scholar 

  • Swanson, L. W., Cowan, W. M., & Jones, E. G. (1975). An autoradiographic study of the efferent connections of the ventral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology, 156, 143–164.

    Article  Google Scholar 

  • Takahashi, J. S., Decoursey, P. J., Bauman, L., & Menaker, M. (1984). Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature, 308, 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji, K., & Tohyama, M. (1989). The organization of the rat lateral geniculate body by immunohistochemical analysis of neuroactive substances. Brain Research, 480, 198–209.

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji, K., Miguel-Hidalgo, J. J., & Tohyama, M. (1991). Substance P-immunoreactive innervation from the retina of the suprachiasmatic nucleus in the rat. Brain Research, 568, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Takumi, T., et al. (1998). A new mammaliam period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells, 3, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Takumi, T., et al. (1998). A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. The EMBO Journal, 17, 4753–4759.

    Article  PubMed  CAS  Google Scholar 

  • Tei, H., et al. (1997). Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature, 389, 512–516.

    Article  PubMed  CAS  Google Scholar 

  • Terman, M., & Schlager, D. S. (1990). Twilight therapeutics, winter depression, melatonin, and sleep. In J. Montplaisir & R. Godbout (Eds.), Sleep and biological rhythms (pp. 113–128). New York: Oxford University Press.

    Google Scholar 

  • Thielen, G., & Meissl, H. (1987). Action spectra of the lateral eyes recorded from mammalian pineal glands. Brain Research, 424, 10–16.

    Article  Google Scholar 

  • Thresher, R. J., Hotz Vitaterna, Y., Miyamoto, A., Kazantsev, D. S., Hsu, C., Petit, C. P., Selby, L., Dawut, O., Smithies and Takahashi, J. S., & Sancar, A. (1998). Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science, 282, 1490–1494.

    CAS  Google Scholar 

  • Thomson, A. M., & West, D. C. (1990) Factors affecting slow regular firing in the suprachiasmatic nucleus in vitro. Journal of Biological Rhythms, 5, 59–75.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, K., Shibata, S., Ueki, S., & Watanabe, S. (1992). Effects of 5-HT1A receptor agonists on the circadian rhythm of wheel running activity in hamsters. European Journal of Pharmacology, 214, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, K., Shibata, S., Hamada, T., & Watanabe, S. (1994a). GABAA receptor agonist muscimol can reset the phase of neural activity rhythm in the rat suprachiasmatic nucleus in vitro. Neuroscience Letters, 166, 81–4.

    Article  CAS  Google Scholar 

  • Tominaga, K, Geusz, M. E., Michel, S., Sc Inouye, S. T. (1994b). Calcium imaging in organotypic cultures of the rat suprachiasmatic nucleus. NeuroReport, 5, 1901–1905.

    Article  CAS  Google Scholar 

  • Tosini, G., & Menaker, M. (1996). Circadian rhythms in cultured mammalian retina. Science, 272, 419–421.

    Article  PubMed  CAS  Google Scholar 

  • Treep, J. A., Abe, H., Rusak, B., & Goguen, D. M. (1995). Two distinct retinal projections to the hamster suprachiasmatic nucleus. Journal of Biological Rhythms, 10, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Trejo, L. J., & Cicèrone, C. M. (1984). Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Research, 300, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Turek, E W., Earnest, D. J. & Swann, I. (1982). Splitting of the circadian rhythm of activity in hamsters. In I. Aschoff, S. Daan, Sc. G. A. Groos (Eds.), Vertebrate circadian systems. Structure and physiology (pp. 203214). Berlin: Springer-Verlag.

    Google Scholar 

  • Underwood, H., & Groos, G. A. (1982). Vertebrate circadian rhythms: Retinal and extraretinal photoreceptors. Experientia, 38, 1013–1021.

    Article  PubMed  CAS  Google Scholar 

  • van den Pol, A. N., & Tsujimoto, K. L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunohistochemical analysis of 25 neuronal antigens. Neuroscience, 1985, 1049–1086.

    Google Scholar 

  • van den Pol, A. N., Finkbeiner, S. M., & Cornell-Bell, A. H.(1992). Calcium excitability and oscillations in suprachiasmatic nucleus neurons and Oa in vitro. Journal of Neuroscience, 12, 2648–2664.

    PubMed  Google Scholar 

  • van den Pol, A. N., Hermans-Borgmeyer, I., Hofer, M., Ghosh, P., & Heinemann, S. (1994a). Ionotropic glutamate-receptor gene expression in hypothalamus: Localization of AMPA, kainate and NMDA receptor RNA with in situ hybridization. Journal of Comparative Neurology, 343, 428–444.

    Article  Google Scholar 

  • van den Pol, A. N., Kogelman, L., Ghosh, P., Liljelund, P., Sc Blackstone, C. (1994b). Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluRI. Journal of Neuroscience, 14, 3816–3834.

    Google Scholar 

  • Vindlacheruvu, R. R., Ebling, F. J. P., Maywood, E. S., & Hasting, M. H. (1992). Blockade of glutamatergic neurotransmission in the suprachiasmatic nucleus prevents cellular and behavioural responses of the circadian system to light. European Journal of Neuroscience, 4, 673–679.

    Article  PubMed  Google Scholar 

  • von Schantz, M., Argamaso-Hernan, S. M., Szél, A., Sc Foster, R. G. (1997). Photopigments and photo-entrainment in the Syrian golden hamster. Brain Research, 770, 131–138.

    Article  Google Scholar 

  • Walsh, I. B., van den Berg, R. J., & Rietveld, W. J. (1995). Ionic currents in cultured rat suprachiasmatic neurons. Neuroscience, 89 915–929.

    Article  Google Scholar 

  • Watanabe, A., Hamada, T., Shibata, S., & Watanabe, S. (1994). Effects of nitric oxide synthase inhibitors on N-methyl-n-aspartate-induced phase delay of circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro. Brain Research, 646, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S. M., Champney, T. H., Lewinski, A. K., & Reiter, R. J. (1985). Photoreceptor damage and eye pigmentation. Influence on the sensitivity of rat pineal-N-acetyltransferase activity and melatonin levels to light at night. Neuroendocrinology, 40, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E. T., & Rea, M. A. (1997). Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters. Neuroscience Letters, 231, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M. U., Sc Rea, M. A. (1995b). Nitric oxide synthase inhibitor blocks light-induced phase shifts of circadian activity rhythm, but not c fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Research, 692; 137–142.

    Article  CAS  Google Scholar 

  • Wheal, H. V., & Thomson, A. M. (1984). The electrical properties of neurones of the rat suprachiasmatic nucleus recorded in vitro. Neuroscience, 13, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, S., Kerbeshian, M. C., Hocker, C. G., Block, G. D. Sc Menaker, M. (1998). Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. Journal of Neuroscience, 18, 10709–10723.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S., Goto, M. & Menaker, M. (1999). No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. Journal of Biological of Rhythms, 14, 197–201.

    Article  CAS  Google Scholar 

  • Ying, S. W., & Rusak, B. (1994). Effects of serotonergic agonists on firing rates of photically responsive cells in the hamster suprachiasmatic nucleus. Brain Research, 651, 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Youngstrom, T. G., Weiss, M. L., & Nunez, A. A. (1991). Retinofungal projections to the hypothalamus, anterior thalamus and basal forebrain in hamsters. Brain Research Bulletin, 26, 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M., Eichele, G., Lee, C. C., & Bradley, A. (1999). The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature, 400, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., & Rusak, B. (1989). Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate. Brain Research, 504, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Zucker, I., Rusak, B., & King, R. G. (1976). Neural bases for circadian rhythms in rodent behavior. In A. H. Riesen & R. F. Thompson (Eds.), Advances in psychobiology (Vol. III, pp. 35–74). New York: Wiley.

    Google Scholar 

  • Zylka, M.J., Shearman, L. P., Weaver, D. R., & Reppert, S. M. (1998). Three period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron, 20, 1103–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meijer, J.H. (2001). Photic Entrainment in Mammals. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics